Advertisement

The European Physical Journal Special Topics

, Volume 224, Issue 1, pp 17–24 | Cite as

Multivariable optimization: Quantum annealing and computation

  • S. Mukherjee
  • B.K. Chakrabarti
Review
Part of the following topical collections:
  1. Quantum Annealing: The Fastest Route to Quantum Computation?

Abstract

Recent developments in quantum annealing techniques have been indicating potential advantage of quantum annealing for solving NP-hard optimization problems. In this article we briefly indicate and discuss the beneficial features of quantum annealing techniques and compare them with those of simulated annealing techniques. We then briefly discuss the quantum annealing studies of some model spin glass and kinetically constrained systems.

Keywords

Simulated Annealing European Physical Journal Special Topic Spin Glass Quantum Tunneling Annealing Schedule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Science 220, 4598 (1983)CrossRefMathSciNetGoogle Scholar
  2. 2.
    K. Binder, A.P. Young, Rev. Mod. Phys. 58, 801 (1986)ADSCrossRefGoogle Scholar
  3. 3.
    P. Ray, B.K. Chakrabarti, A. Chakrabarti, Phys. Rev. B 39, 11828 (1989)ADSCrossRefGoogle Scholar
  4. 4.
    D. Thirumalai, Q. Li, T.R. Kirkpatrick, J. Phys. A: Math. Gen. 22, 3339 (1989)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    B.K. Chakrabarti, A. Dutta, P. Sen, Quantum Ising Phases & Transitions in Transverse Ising Models (Springer, Heidelberg, 1996)Google Scholar
  6. 6.
    A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, D.J. Doll, Chem. Phys. Lett. 219, 343 (1994)ADSCrossRefGoogle Scholar
  7. 7.
    T. Kadowaki, H. Nishimori, Phys. Rev. E 58, 5355 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    J. Brooke, D. Bitko, T.F. Rosenbaum, G. Aeppli, Science 284, 779 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Ludgren, D. Preda, Science 292, 472 (2001)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    G.E. Santoro, R. Martoňák, E. Tosatti, R. Car, Science 295, 2427 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    A. Das, B.K. Chakrabarti, Rev. Mod. Phys. 80, 1061 (2008)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    B. Altshuler, H. Kroviand, J. Roland, Proc. Natl. Acad. Sci. USA 107, 28 (2010)CrossRefGoogle Scholar
  13. 13.
    I. Hen, A.P. Young, Phys. Rev. E 84, 061152 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    A. Das, B.K. Chakrabarti, R.B. Stinchcombe, Phys. Rev. E 72, 026701 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    G.E. Santoro, E. Tosatti, J. Phys. A 39, R393 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    S. Morita, H. Nishimori, J. Math. Phys. 49, 125210 (2008)ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    C.A. Torres, D.M. Silevitch, G. Aeppli, T.F. Rosenbaum, Phys. Rev. Lett. 101, 057201 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    M.W. Johnson, M.H.S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A.J. Berkley, J. Johansson, P. Bunyk, E.M. Chapple, C. Enderud, J.P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M.C. Thom, E. Tolkacheva, C.J.S. Truncik, S. Uchaikin, J. Wang, B. Wilson, G. Rose, Nature 473, 194 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    V.N. Smelyanskiy, E.G. Rieffel, S.I. Knysh, C.P. Williams, M.W. Johnson, M.C. Thom, K.L.P.W.G. Macready, A near-term quantum computing approach for hard computational problems in space exploration [arXiv:1204.2821] (2012)
  20. 20.
    Y. Yamamoto, K. Takata, S. Utsunomiya, New Gener. Comput. 30, 327 (2012)CrossRefGoogle Scholar
  21. 21.
    A. Perdomo-Ortiz, N. Dickson, M. Drew-Brook, G. Rose, A. Aspuru-Guzik, Sci. Rep. 2, 571 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    S. Suzuki, J.-i. Inoue, B.K. Chakrabarti, Quantum Ising Phases & Transitions in Transverse Ising Models, Chapter 8 on Quantum annealing (Springer, Heidelberg, 2013), p. 225Google Scholar
  23. 23.
    I. Bose, Sci. Cul. 79, 381 (2013)Google Scholar
  24. 24.
    A. Ghosh, S. Mukherjee, Sci. Cult. 79, 485 (2013), [arXiv:1310.1339v4]Google Scholar
  25. 25.
    S. Boixo, T.F. Rãnnow, S.V. Isakov, Z. Wang, D. Wecker, D.A. Lidar, J.M. Martinis, M. Troyer, Nat. Phys. 10, 218 (2014)CrossRefGoogle Scholar
  26. 26.
    H.G. Katzgraber, F. Hamze, R.S. Andrist, Phys. Rev. 4, 021008 (2014)Google Scholar
  27. 27.
    E. Cohen, B. Tamir, Int. J. Quantum Inf. 13, 143002 (2014)MathSciNetGoogle Scholar
  28. 28.
    A. Rajak, B.K. Chakrabarti, Indian J. Phys. 88, 951 (2014), [arXiv:1405.3905]ADSCrossRefGoogle Scholar
  29. 29.
    D. Venturelli, S. Mandrà, S. Knysh, B. O’Gorman, R. Biswas, V. Smelyanskiy, Quantum Optimization of Fully-Connected Spin Glasses [arXiv:1406.7553] (2014)
  30. 30.
    A. Perdomo-Ortiz, J. Fluegemann, S. Narasimhan, R. Biswas, V. Smelyanskiy, A Quantum Annealing Approach for Fault Detection and Diagnosis of Graph-Based Systems [arXiv:1406.7601] (2014)
  31. 31.
    E.G. Rieffel, D. Venturelli, B. O’Gorman, M.B. Do, E. Prystay, V. Smelyanskiy, A case study in programming a quantum annealer for hard operational planning problems [arXiv:1407.2887] (2014)
  32. 32.
    A. Dutta, G. Aeppli, B.K. Chakrabarti, U. Divakaran, T. Rosenbaum, D. Sen, Quantum Phase Transitions in Transverse Field Models: From Statistical Physics to Quantum Information, Chapter 15 on quantum annealing & computation (Cambridge University Press, 2014) (in press)Google Scholar
  33. 33.
    L.K. Grover, Am. J. Phys. 69, 769 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    J. Roland, N.J. Cerf, Phys. Rev. A 65, 042308 (2002)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Condensed Matter Physics Division, Saha Institute of Nuclear PhysicsKolkataIndia

Personalised recommendations