The European Physical Journal Special Topics

, Volume 224, Issue 1, pp 5–13 | Cite as

Quo Vadis quantum annealing?

  • Arnab Das
  • Sei Suzuki
Part of the following topical collections:
  1. Quantum Annealing: The Fastest Route to Quantum Computation?


In this article we sketch a broad outline of quantum annealing as a framework for realizing analog quantum computation. We provide a short review of the basic ideas and discuss some issues relevant to the current scenario of condensed matter physics and quantum computation.


European Physical Journal Special Topic Classical Computer Quantum Tunneling Open Quantum System Fast Route 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Kirkpatrick, C. Gelatt, M.P. Vecchi, Science 220, 671 (1983)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    L.I. Schiff, Quantum Mechanics, 3rd edition (McGraw-Hill, 1968)Google Scholar
  3. 3.
    K. Binder, A.P. Young, Rev. Mod. Phys. 58, 801 (1986)ADSCrossRefGoogle Scholar
  4. 4.
    P. Ray, B.K. Chakrabarti, A. Chakrabarti, Phys. Rev. B 39, 11828 (1989)ADSCrossRefGoogle Scholar
  5. 5.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (10th Anniv. Version) (Cambridge University Press, Cambridge, 2010)Google Scholar
  6. 6.
    A. Das, J. Phys.: Conf. Ser. 143, 012001 (2009), [arXiv:quant-ph/0811.0881]ADSGoogle Scholar
  7. 7.
    L.K. Grover, Phys. Rev. Lett. 79, 325 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    B. Apolloni, C. Carvalho, D. de Falco, Stoch. Process. Appl. 33, 233 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    A. Das, B.K. Chakrabarti, Rev. Mod. Phys. 80, 1061 (2008)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    A. Das, B.K. Chakrabarti (ed.), Quantum Annealing and Related Optimization Methods, Lecture Notes in Physics, Vol. 679 (Springer, Heidelberg, 2005)Google Scholar
  11. 11.
    G. Santoro, E. Tosatti, J. Phys. A 39, R393 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    A.B. Finnila, M.A. Gomez, C. Sebenik, C. Stenson, J.D. Doll, Chem. Phys. Lett. 219, 343 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    P. Amara, D. Hsu, J.E. Straub, J. Phys. Chem. 97(25), 6715 (1993)CrossRefGoogle Scholar
  14. 14.
    T. Kadowaki, H. Nishimori, Phys. Rev. E 58, 5355 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    S. Suzuki, J. Inoue, B.K. Chakrabarti, Quantum Ising Phases Transitions in Transverse Ising Models, Lecture Notes in Physics, Vol. 862 (Springer, 2013)Google Scholar
  16. 16.
    G. Santoro, R. Martonák, E. Tosatti, R. Car, Science 295, 2427 (2002)ADSCrossRefGoogle Scholar
  17. 17.
    A. Das, B.K. Chakrabarti, Phys. Rev. E 78, 061121 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    J. Brooke, D. Bitko, T.F. Rosenbaum, G. Aeppli, Science 284, 779 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    M.S. Sarandy, L.A. Wu, D.A. Lidar, Quantum Inf. Process. 3, 331 (2004)CrossRefMathSciNetGoogle Scholar
  20. 20.
    E. Farhi, J. Goldstone, S. Gutmann, M. Sipser (2000), [arXiv:quant-ph/0001106]
  21. 21.
    E. Farhi, J. Goldstone, S. Gutmann, J. Lapan, A. Lundgren, D. Preda, Science 292(5516), 472 (2001)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    J. Roland, N.J. Cerf, Phys. Rev. A 65, 042308 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    C.R. Laumann, R. Moessner, A. Scardicchio, S.L. Sondhi, Phys. Rev. Lett. 109, 030502 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    J. Tsuda, Y. Yamanaka, H. Nishimori, J. Phys. Soc. Jpn. 82, 114004 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    B. Altshuler, H. Kroviand, J. Roland, PNAS 107, 28 (2010)CrossRefGoogle Scholar
  26. 26.
    T. Caneva, R. Fazio, G.E. Santoro, Phys. Rev. B 76, 144427 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    C. De Grandi, A. Polkovnikov, A.W. Sandvik, Phys. Rev. B 84, 224303 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    S. Sachdev, Quantum Phase Transitions (Cambridge University Press, 2011)Google Scholar
  29. 29.
    H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press Inc., New York, 2002)Google Scholar
  30. 30.
    R. Moessner, A.P. Ramirez, Phys. Today 59, 24 (2006)CrossRefGoogle Scholar
  31. 31.
    L. Balents, Nature 464, 119 (2010)CrossRefGoogle Scholar
  32. 32.
    M. Troyer, U.J. Wiese, Phys. Rev. Lett. 94, 170201 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    P. Henelius, A.W. Sandvik, Phys. Rev. B 62, 1102 (2000)ADSCrossRefGoogle Scholar
  34. 34.
    A.M. Läuchli, J. Sudan, E.S. Sørensen, Phys. Rev. B 83, 212401 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    I. Bloch, J. Dalibard, S. Nascimbène, Nat. Phys. 8, 267 (2012)CrossRefGoogle Scholar
  36. 36.
    T.F. Rønnow, Z. Wang, J. Job, S. Boixo, S.V. Isakov, D. Wecker, J.M. Martinis, D.A. Lidar, M. Troyer, Science 345, 420 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    H. Johnston, Is D-Wave’s quantum computer actually a quantum computer? (Physics World News, 2014)Google Scholar

Copyright information

© EDP Sciences and Springer 2015

Authors and Affiliations

  1. 1.Theoretical Physics Department, Indian Association for the Cultivation of ScienceKolkataIndia
  2. 2.Department of Liberal ArtsSaitama Medical UniversityMoroyama, SaitamaJapan

Personalised recommendations