Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 14, pp 3295–3309 | Cite as

Working under confinement

  • P. Malgaretti
  • I. Pagonabarraga
  • J.M. Rubi
Review
Part of the following topical collections:
  1. Brownian Motion in Confined Geometries. Guest Editors: S.M. Bezrukov, L. Schimansky-Geier and G. Schmid (Eds.)

Abstract

We analyze the performance of a Brownian ratchet in the presence of geometrical constraints. A two-state model that describes the kinetics of molecular motors is used to characterize the energetic cost when the motor proceeds under confinement, in the presence of an external force. We show that the presence of geometrical constraints has a strong effect on the performance of the motor. In particular, we show that it is possible to enhance the ratchet performance by a proper tuning of the parameters characterizing the environment. These results open the possibility of engineering entropically-optimized transport devices.

Keywords

Phase Shift External Force European Physical Journal Special Topic Geometrical Constraint Processive Motor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.M. Jacobs, Diffusion Processes (Springer-Verlag, New York, 1967)Google Scholar
  2. 2.
    R. Zwanzig, J. Phys. Chem. 96, 3926 (1992)CrossRefGoogle Scholar
  3. 3.
    D. Reguera, J.M. Rubi, Phys. Rev. E. 64, 061106 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    D. Reguera, G. Schmid, P.S. Burada, J.M. Rubi, P. Reimann, P. Hänggi, Phys. Rev. Lett. 96, 130603 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    M. Vazquez, A. Berezhkovskii, L. Dagdug, J. Chem. Phys. 129, 046101 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    L. Dagdug, A.M. Berezhkovskii, Y.A. Makhnovskii, V.Y. Zitsereman, S. Bezrukov, J. Chem. Phys. 134, 101102 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    P.S. Burada, P. Hänggi, F. Marchesoni, G. Schmid, P. Talkne, Chem. Phys. Chem. 10, 45 (2009)Google Scholar
  8. 8.
    P. Malgaretti, I Pagonabarraga, J.M. Rubi, Front. Physics 1, 21 (2013)ADSCrossRefGoogle Scholar
  9. 9.
    C.P. Brangwynne, G. Koenderink, F. MacKintosh, D. Weitz, Trends Cell. Biol. 19, 423 (2009)CrossRefGoogle Scholar
  10. 10.
    B. Hille, Ion Channels of Excitable Membranes (Sinauer, Sunderland, 2001)Google Scholar
  11. 11.
    C. Calero, J. Faraudo, M. Aguilella-Arzo, Phys. Rev. E. 83, 021908 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    R.M. Barrer, Zeolites and Clay Minerals as Sorbents and Molecular Sieves (Academic, New York, 1978)Google Scholar
  13. 13.
    J. Han, H. Craighead, Science, 288, 1026 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    E. Altintas, E. Sarajlic, F.K. Bohringerb, H. Fujita, Sensors Actuat. A 154, 123 (2009)CrossRefGoogle Scholar
  15. 15.
    P. Malgaretti, I. Pagonabarraga, J.M. Rubi, Phys. Rev. Lett. 113, 128310 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    K. Dill, H. Chan, Nat. Struct. Biol. 4, 10 (1997)CrossRefGoogle Scholar
  17. 17.
    P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 38 (2009)CrossRefGoogle Scholar
  18. 18.
    T. Guerin, J. Prost, P. Martin, J.-F. Joanny, Curr. Op. Cell Biol. 22, 14 (2010)CrossRefGoogle Scholar
  19. 19.
    D. Suzuk, T. Munakata, Phys. Rev. E 68, 021906 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    L. Machura, M. Kostur, P. Talkner, J. Luczka, F. Marchesoni, P. Hänggi, Phys. Rev. E 70, 061105 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    P. Malgaretti, I. Pagonabarraga, D. Frenkel, Phys. Rev. Lett. 109, 168101 (2012)ADSCrossRefGoogle Scholar
  22. 22.
    A. Lervikemail, F. Bresme, S. Kjelstrup, J.M. Rubi, Biophys. J. 103, 1218 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    P. Malgaretti, I. Pagonabarraga, J.M. Rubi, Phys. Rev. E. 85, 010105 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    P. Malgaretti, I. Pagonabarraga, J.M. Rubi, J. Chem. Phys 138, 194906 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    G. Thomas, J. Prost, P. Martin, J.-F. Joanny, Curr. Op. Cell Biol. 22, 14 (2010)CrossRefGoogle Scholar
  26. 26.
    R.D. Astumian, Biophys. J. 98, 2401 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    A. Allison, D. Abbott, Microelectr. J. 33, 235 (2002)CrossRefGoogle Scholar
  28. 28.
    B.Y. Zhu, F. Marchesoni, F. Nori, Phys. Rev. Lett. 92, 180602 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    H. Linke, H. Xu, A. Lo, W. Sheng, A. Svensson, P. Omling, P.E. Lindelof, R. Newbury, R.P. Taylor, Physica B 272, 61 (1999)ADSCrossRefGoogle Scholar
  30. 30.
    P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    F. Jülicher, A. Ajdari, J. Prost, RMP Colloquia 69, 1269 (1997)CrossRefGoogle Scholar
  32. 32.
    P. Kalinay, J.K. Percus, J. Chem. Phys. 122, 204701 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    P. Kalinay, J.K. Percus, Phys. Rev. E. 74, 041203 (2006)ADSCrossRefMathSciNetGoogle Scholar
  34. 34.
    S. Martens, G. Schmidt, L. Schimansky-Geier, P. Hänggi, Phys. Rev. E. 83, 051135 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    P.S. Burada, G. Schmid, D. Reguera, J.M. Rubi, P. Hänggi, Phys. Rev. E. 75, 051111 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    D. Reguera, A. Luque, P.S. Burada, G. Schmidt, J.M. Rubi, P. Hänggi, Phys. Rev. Lett. 108, 020604 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    I. Pineda, J. Alvarez-Ramirez, L. Dagdug, J. Chem. Phys. 137, 174103 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    P. Kalinay, Phys. Rev. E. 89, 042123 (2014)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  1. 1.Institut für Intelligente SystemeStuttgartGermany
  2. 2.IV. Institut für Theoretische PhysikUniversität StuttgartStuttgartGermany
  3. 3.Departament de Fisica FonamentalUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations