Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 14, pp 3227–3242 | Cite as

Active Brownian motion in a narrow channel

  • X. Ao
  • P.K. Ghosh
  • Y. Li
  • G. Schmid
  • P. Hänggi
  • F. Marchesoni
Review
Part of the following topical collections:
  1. Brownian Motion in Confined Geometries. Guest Editors: S.M. Bezrukov, L. Schimansky-Geier and G. Schmid (Eds.)

Abstract

We review recent advances in rectification control of artificial microswimmers, also known as Janus particles, diffusing along narrow, periodically corrugated channels. The swimmer self-propulsion mechanism is modeled so as to incorporate a nonzero torque (propulsion chirality). We first summarize the effects of chirality on the autonomous current of microswimmers freely diffusing in channels of different geometries. In particular, left-right and upside-down asymmetric channels are shown to exhibit different transport properties. We then report new results on the dependence of the diffusivity of chiral microswimmers on the channel geometry and their own self-propulsion mechanism. The self-propulsion torque turns out to play a key role as a transport control parameter.

Keywords

European Physical Journal Special Topic Thermal Noise Asymmetric Channel Janus Particle Triangular Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a review see: P.S. Burada, P. Hänggi, F. Marchesoni, G. Schmid, P. Talkner, Chem. Phys. Chem. 10, 45 (2009)Google Scholar
  2. 2.
    P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    S. Denisov, S. Flach, P. Hänggi, Phys. Rep. 538, 77 (2014)ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    P.K. Ghosh, V.R. Misko, F. Marchesoni, F. Nori, Phys. Rev. Lett. 110, 268301 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    E.M. Purcell, Am. J. Phys. 45, 3 (1977)ADSCrossRefGoogle Scholar
  6. 6.
    F. Schweitzer, Brownian Agents and Active Particles (Springer, Berlin, 2003)Google Scholar
  7. 7.
    S. Ramaswamy, Annu. Rev. Condens. Matter Phys. 1, 323 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    T. Vicsek, A. Zafeiris, Phys. Rep. 517, 71 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    P. Romanczuk, M. Bär, W. Ebeling, B. Lindner, L. Schimansky-Geier, Eur. Phys. J. Special Topics 202, 1 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    S. Jiang, S. Granick (eds.), Janus Particle Synthesis, Self-Assembly and Applications (RSC Publishing, Cambridge, 2012)Google Scholar
  11. 11.
    A. Walther, A.H.E. Müller, Chem. Rev. 113, 5194 (2013)CrossRefGoogle Scholar
  12. 12.
    W.F. Paxton, S. Sundararajan, T.E. Mallouk, A. Sen, Angew. Chem. Int. Ed. 45, 5420 (2006)CrossRefGoogle Scholar
  13. 13.
    J.G. Gibbs, Y.-P. Zhao, Appl. Phys. Lett. 94, 163104 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    J.R. Howse, R.A.L. Jones, A.J. Ryan, T. Gough, R. Vafabakhsh, R. Golestanian, Phys. Rev. Lett. 99, 048102 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    G. Volpe, I. Buttinoni, D. Vogt, H.-J. Kümmerer, C. Bechinger, Soft Matter 7, 8810 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    H.R. Jiang, N. Yoshinaga, M. Sano, Phys. Rev. Lett. 105, 268302 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    L. Baraban, R. Streubel, D. Makarov, L. Han, D. Karnaushenko, O.G. Schmidt, G. Cuniberti, ACS Nano 7, 1360 (2013)CrossRefGoogle Scholar
  18. 18.
    see, e.g., Y. Hong, D. Velegol, N. Chaturvedi, A. Sen, Phys. Chem. Chem. Phys. 12, 1823 (2010)CrossRefGoogle Scholar
  19. 19.
    A. Búzás, L. Kelemen, A. Mathesz, L. Oroszi, G. Vizsnyiczai, T. Vicsek, P. Ormos, Appl. Phys. Lett. 101, 041111 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    S. van Teeffelen, H. Löwen, Phys. Rev. E 78, 020101 (2008)CrossRefGoogle Scholar
  21. 21.
    B.M. Friedrich, F. Jülicher, Phys. Rev. Lett. 103, 068102 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    C.J. Brokaw, J. Exp. Biol. 35, 197 (1958)Google Scholar
  23. 23.
    C.J. Brokaw, J. Cell. Comp. Physiol. 54, 95 (1959)CrossRefGoogle Scholar
  24. 24.
    M. Mijalkov, G. Volpe, Soft Matter 9, 6376 (2013)ADSCrossRefGoogle Scholar
  25. 25.
    F. Kümmel, B. ten Hagen, R. Wittkowski, I. Buttinoni, R. Eichhorn, G. Volpe, H. Löwen, C. Bechinger, Phys. Rev. Lett. 110, 198302 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    A. Boymelgreen, G. Yossifon, S. Park, T. Miloh, Phys. Rev. E 89, 011003(R) (2014)ADSCrossRefGoogle Scholar
  27. 27.
    A. Sen, M. Ibele, Y. Hong, D. Velegol, Faraday Discuss. 143, 15 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    A. Zöttl, H. Stark, Phys. Rev. Lett. 108, 218104 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    P.K. Radtke, L. Schimansky-Geier, Phys. Rev. E 85, 051110(R) (2012)ADSCrossRefGoogle Scholar
  30. 30.
    T.R. Kline, W.F. Paxton, T.E. Mallouk, A. Sen, Angew. Chem. Int. Ed. 44, 744 (2005)CrossRefGoogle Scholar
  31. 31.
    B. ten Hagen, S. van Teeffelen, H. Löwen, J. Phys.: Condens. Matter 23, 194119 (2011)ADSGoogle Scholar
  32. 32.
    S.E. Spagnolie, E. Lauga, J. Fluid Mech. 700, 105 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    M. Ripoll, P. Holmqvist, R.G. Winkler, G. Gompper, J.K.G. Dhont, M.P. Lettinga, Phys. Rev. Lett. 101, 168302 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    I. Buttinoni, J. Bialkè, F. Kümmel, H. Löwen, C. Bechinger, T. Speck, Phys. Rev. Lett. 110, 238301 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    D. Takagi, J. Palacci, A.B. Braunschweig, M.J. Shelley, J. Zhang, Soft Matter 10, 1784 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    P.K. Ghosh, P. Hänggi, F. Marchesoni, F. Nori, G. Schmid, Europhys. Lett. 98, 50002 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    P.K. Ghosh, P. Hänggi, F. Marchesoni, F. Nori, G. Schmid, Phys. Rev. E 86, 021112 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    H. Brenner, D.A. Edwards, Macrotransport Processes (Butterworth-Heinemann, New York, 1993)Google Scholar
  39. 39.
    P.K. Ghosh, P. Hänggi, F. Marchesoni, F. Nori, Phys. Rev. E 89, 062115 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    Y. Li, P.K. Ghosh, F. Marchesoni, B. Li (submitted) (2014)Google Scholar
  41. 41.
    Y. Fily, A. Baskaran, M.F. Hagan [arXiv:1402.5583] [cond-mat.soft]
  42. 42.
    A. Fick, Ann. Phys. Chem. 94, 59 (1855)ADSCrossRefGoogle Scholar
  43. 43.
    M.H. Jacobs, Diffusion processes (Springer, New York, 1967)Google Scholar
  44. 44.
    R. Zwanzig, J. Phys. Chem. 96, 3926 (1992)CrossRefGoogle Scholar
  45. 45.
    L. Machura, M. Kostur, P. Talkner, J. Luczka, F. Marchesoni, P. Hänggi, Phys. Rev. E 70, 061105 (2004)ADSCrossRefGoogle Scholar
  46. 46.
    Y. Fily, M.C. Marchetti, Phys. Rev. Lett. 108, 235702 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    P.S. Burada, G. Schmid, D. Reguera, J.M. Rubi, P. Hänggi, Phys. Rev. E 75, 051111 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    L. Bosi, P.K. Ghosh, F. Marchesoni, J. Chem. Phys. 137, 174110 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    F. Marchesoni, S. Savel’ev, Phys. Rev. E 80, 011120 (2009)ADSCrossRefGoogle Scholar
  50. 50.
    details are given in the PhD thesis of Xue Ao (Augsburg University, in preparation)Google Scholar
  51. 51.
    M. Borromeo, F. Marchesoni, Chem. Phys. 375, 536 (2010)ADSCrossRefGoogle Scholar
  52. 52.
    M. Borromeo, F. Marchesoni, P.K. Ghosh, J. Chem. Phys 134, 051101 (2011)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • X. Ao
    • 1
  • P.K. Ghosh
    • 2
  • Y. Li
    • 3
  • G. Schmid
    • 1
  • P. Hänggi
    • 1
    • 3
  • F. Marchesoni
    • 3
    • 4
  1. 1.Institut für PhysikUniversität AugsburgAugsburgGermany
  2. 2.Department of ChemistryPresidency UniversityKolkataIndia
  3. 3.Center for Phononics and Thermal Energy Science, School of Physics Science and EngineeringTongji UniversityShanghaiPeople’s Republic of China
  4. 4.Dipartimento di FisicaUniversità di CamerinoCamerinoItaly

Personalised recommendations