Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 14, pp 3165–3178 | Cite as

Brownian motion in electrochemical nanodevices

  • K. J. Krause
  • K. Mathwig
  • B. Wolfrum
  • S. G. Lemay
Review
Part of the following topical collections:
  1. Brownian Motion in Confined Geometries. Guest Editors: S.M. Bezrukov, L. Schimansky-Geier and G. Schmid (Eds.)

Abstract

Diffusion dominates mass transport in most electrochemical systems. In classical experimental systems on the micrometer scale or larger, this is adequately described at the mean-field level. However, nanoscale detection devices are being developed in which a handful or even single molecules can be detected. Brownian dynamics become manifest in these systems via the associated fluctuations in electrochemical signals. Here we describe the state of the art of these electrochemical nanodevices, paying particular attention to the role of Brownian dynamics and emphasizing areas in which theoretical understanding remains limited.

Keywords

Brownian Motion Power Spectral Density European Physical Journal Special Topic Shot Noise Noise Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.J. Bard, L.R. Faulkner, Electrochemical methods - Fundamentals and Applications, 2nd ed. (John Wiley & Sons, New York, 2001), p. 137Google Scholar
  2. 2.
    L. Rassaei, P.S. Singh, S.G. Lemay Anal. Chem. 2011, 3974 (2011)CrossRefGoogle Scholar
  3. 3.
    S.G. Lemay, S. Kang, K. Mathwig, P.S. Singh, Acc. Chem. Res. 46, 369 (2013)CrossRefGoogle Scholar
  4. 4.
    K.B. Oldham, J. Electroanal. Chem. 323, 53 (1992)CrossRefGoogle Scholar
  5. 5.
    V.A. Tyagai, Electrochim. Acta 16, 1647 (1971)CrossRefGoogle Scholar
  6. 6.
    G. Blanc, C. Gabrielli, M. Keddam, Electrochim. Acta 20, 687 (1975)CrossRefGoogle Scholar
  7. 7.
    G. Blanc, I. Epelboin, C. Gabrielli, M. Keedam, J. Electroanal. Chem. 75, 97 (1977)CrossRefGoogle Scholar
  8. 8.
    C. Gabrielli, F. Huet, M. Keddam, Electrochim. Acta 31, 1025 (1986)CrossRefGoogle Scholar
  9. 9.
    A. Hassibi, R. Navid, R.W. Dutton, T.H. Lee, J. Appl. Phys. 96, 1074 (2004)ADSCrossRefGoogle Scholar
  10. 10.
    G. Mézáros, I. Szenes, B. Lengyel, Electrochem. Comm. 6, 1185 (2004)CrossRefGoogle Scholar
  11. 11.
    D. Krapf, Phys. Chem. Chem. Phys. 15, 459 (2013)CrossRefGoogle Scholar
  12. 12.
    O. Niwa, M. Morita, H. Tabei, Anal. Chem. 62, 447 (1990)CrossRefGoogle Scholar
  13. 13.
    E.D. Goluch, B. Wolfrum, P.S. Singh, M.A.G. Zevenbergen, S.G. Lemay, Anal. Bioanal. Chem. (394), 447 (2009)CrossRefGoogle Scholar
  14. 14.
    G. Zhao, D.M. Giolando, J.R. Kirchhoff, Anal. Chem. 67, 1491 (1995)CrossRefGoogle Scholar
  15. 15.
    C.X. Ma, N.M. Contento, L.R. Gibson, P.W. Bohn, ACS Nano 7, 5483 (2013)CrossRefGoogle Scholar
  16. 16.
    C.X. Ma, N.M. Contento, L.R. Gibson, P.W. Bohn, Anal. Chem. 85, 9882 (2013)CrossRefGoogle Scholar
  17. 17.
    L.B. Anderson, C.N. Reilley, J. Electroanal. Chem. 10, 538 (1965)Google Scholar
  18. 18.
    F.R.F. Fan, A.J. Bard, Science 267, 871 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    P. Sun, M.V. Mirkin, J. Am. Chem. Soc. 130, 8241 (2008)CrossRefGoogle Scholar
  20. 20.
    M.A.G. Zevenbergen, B.L. Wolfrum, E.D. Goluch, P.S. Singh, S.G. Lemay, J. Am. Chem. Soc. 131, 11471 (2009)CrossRefGoogle Scholar
  21. 21.
    K. Mathwig, S.G. Lemay, Electrochim. Acta 112, 943 (2013)CrossRefGoogle Scholar
  22. 22.
    M.A.G. Zevenbergen, D. Krapf, M.R. Zuiddam, S.G. Lemay, Nano Lett. 7, 384 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    S.M. Bezrukov, A.M. Berezhkovskii, M.A. Pustovoit, A. Szabo, J. Chem. Phys. 113, 8206 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    M.A.G. Zevenbergen, P.S. Singh, E.D. Goluch, B.L. Wolfrum, S.G. Lemay, Anal. Chem. 81, 8203 (2009)CrossRefGoogle Scholar
  25. 25.
    P.S. Singh, E. Kätelhön, K. Mathwig, B. Wolfrum, S.G. Lemay, ACS Nano 6, 9662 (2012)CrossRefGoogle Scholar
  26. 26.
    E. Kätelhön, K.J. Krause, P.S. Singh, S.G. Lemay, B. Wolfrum, J. Am. Chem. Soc. 135, 8874 (2013)CrossRefGoogle Scholar
  27. 27.
    E. Kätelhön, K.J. Krause, K. Mathwig, S.G. Lemay, B. Wolfrum, ACS Nano 8, 4924 (2014)CrossRefGoogle Scholar
  28. 28.
    D. Magde, E. Elson, W.W. Webb, Phys. Rev. Lett. 29, 705 (1972)ADSCrossRefGoogle Scholar
  29. 29.
    K. Mathwig, D. Mampallil, S. Kang, S.G. Lemay, Phys. Rev. Lett. 109, 118302 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    D. Mampallil, K. Mathwig, S. Kang, S.G. Lemay, J. Phys. Chem. Lett. 5, 636 (2014)CrossRefGoogle Scholar
  31. 31.
    P.S. Singh, H.-S.M. Chan, S. Kang, S.G. Lemay, J. Am. Chem. Soc. 45, 18289 (2011)CrossRefGoogle Scholar
  32. 32.
    S. Kang, K. Mathwig, S.G. Lemay, Lab Chip 12, 1262 (2012)CrossRefGoogle Scholar
  33. 33.
    M.A.G. Zevenbergen, P.S. Singh, E.D. Goluch, B.L. Wolfrum, S.G. Lemay, Nano Lett. 11, 2881 (2011)CrossRefGoogle Scholar
  34. 34.
    S. Kang, A.F. Nieuwenhuis, K. Mathwig, D. Mampallil, S.G. Lemay, ACS Nano 7, 10931 (2013)CrossRefGoogle Scholar
  35. 35.
    W. Fellner, An Introduction to Probability Theory and Its Application, 3rd edn. (Wiley, New York, 1968)Google Scholar
  36. 36.
    S. Redner, A Guide to First-Passage Processes (Cambridge University Press, Cambridge, 2001)Google Scholar
  37. 37.
    K. Mathwig, S.G. Lemay, Micromachines 4, 138 (2013)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • K. J. Krause
    • 1
  • K. Mathwig
    • 2
  • B. Wolfrum
    • 1
    • 3
  • S. G. Lemay
    • 4
  1. 1.Institute of Bioelectronics (PGI-8/ICS-8) and JARAFundamentals of Future Information TechnologyJülichGermany
  2. 2.Institute for Integrative NanosciencesIFW DresdenDresdenGermany
  3. 3.Institute of PhysicsRWTH Aachen UniversityAachenGermany
  4. 4.MESA+ Institute for NanotechnologyUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations