Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 14, pp 3145–3163 | Cite as

Diffusion coefficients and particle transport in synthetic membrane channels

  • S. Pagliara
  • S. L. Dettmer
  • K. Misiunas
  • L. Lea
  • Y. Tan
  • U. F. Keyser
Review
Part of the following topical collections:
  1. Brownian Motion in Confined Geometries. Guest Editors: S.M. Bezrukov, L. Schimansky-Geier and G. Schmid (Eds.)

Abstract

Diffusion in constrained geometries is paramount to transport across biological membranes and in mesoporous materials. Although the transported species vary from system to system, the underlying physical mechanisms are universal. However, there is an imbalance between theory and quantitative experimental model systems. We have recently introduced a new synthetic approach to mimic molecular diffusion based on colloidal particles, digital video microscopy, particle tracking, microfluidics and holographic optical tweezers. In this paper we report useful guidelines for the fabrication, handling and characterisation of the microfluidic chips and a study of diffusion coefficients, particle attempt and translocation rates through microfluidic channels with cross sections of different dimensions.

Keywords

PDMS European Physical Journal Special Topic Colloidal Particle Platinum Wire Wire Array 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular Biology of the Cell (Garland, 2008)Google Scholar
  2. 2.
    J.W.F. Robertson, J.J. Kasianowicz, S. Banerjee, Chem. Rev. 112, 6227 (2012)CrossRefGoogle Scholar
  3. 3.
    T. Chou, D. Lohse, Phys. Rev. Lett. 82, 3552 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    P.C. Bressloff, J.M. Newby, Rev. Mod. Phys. 85, 135 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    M.H. Saier Jr., C.V. Tran, R.D. Barabote, Nucl. Acids Res. 34, D181 (2006)CrossRefGoogle Scholar
  6. 6.
    M.H. Saier Jr., V.S. Reddy, D.G. Tamang, A. Vastermark, Nucl. Acids Res. 42, D251 (2014)CrossRefGoogle Scholar
  7. 7.
    S.W. Cowan, T. Schirmer, G. Rummel, M. Steiert, R. Ghosh, R.A. Pauptit, J.N. Jansonius, J.P. Rosenbusch, Nature 358, 727 (1992)ADSCrossRefGoogle Scholar
  8. 8.
    L.R. Forrest, R. Krämer, C. Ziegler, Biochim. Biophys. Acta 1807, 167 (2011)CrossRefGoogle Scholar
  9. 9.
    W. Saurin, M. Hofnung, E. Dassa, J. Mol. Evol. 48, 22 (1999)CrossRefGoogle Scholar
  10. 10.
    Y.J. Reizer, M.H. Saier, Jr., W.J. Fairbrother, P.E. Wright, Biochemistry 32, 32 (1993)CrossRefGoogle Scholar
  11. 11.
    M. Geiszt, T.L. Leto, J. Biol. Chem. 279, 51715 (2004)CrossRefGoogle Scholar
  12. 12.
    F. Schüth, K.S.W. Sing, J. Weitkamp, Handbook of Porous Solids (Wiley-VCH, 2002)Google Scholar
  13. 13.
    F. Laeri, F. Schüth, U. Simon, M. Wark, Host?Guest Systems Based on Porous Crystals (Wiley-VCH, 2003)Google Scholar
  14. 14.
    S.M. Auerbach, K.A. Carrado, P.K. Dutta, Handbook of Zeolite Science and Technology (Taylor & Francis, 2003)Google Scholar
  15. 15.
    G. Ertl, H. Knözinger, F. Schüth, J. Weitkamp, Handbook of Heterogeneous Catalysis (Wiley-VCH, 2008)Google Scholar
  16. 16.
    J. Kärger, R. Valiullin, Chem. Rev. Soc. 42, 4172 (2013)CrossRefGoogle Scholar
  17. 17.
    J. Kärger, D.M. Ruthven, D. Theodorou, Diffusion in Nanoporous Materials (Wiley-VCH, 2012)Google Scholar
  18. 18.
    A. Siria, P. Poncharal, A.-L. Biance, R. Fulcrand, X. Blase, S. T. Purcell, L. Bocquet, Nature 494, 255 (2014)Google Scholar
  19. 19.
    R.K. Joshi, P. Carbone, F.C. Wang, V.G. Kravets, Y. Su, I.V. Grigorieva, H.A. Wu, A.K. Geim, R.R. Nair, Science 343, 752 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    Z. Yao, C.L. Kane, C. Dekker, Phys. Rev. Lett. 84, 2941 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    N.A.W. Bell, U.F. Keyser, Febs Lett. doi: 10.1016/j.febslet.2014.06.013 (2014)
  22. 22.
    S.W. Kowalczyk, C. Dekker, Nano Lett. 12, 4159 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    V. Kukla, J. Kornatowski, D. Demuth, l. Girnus, H. Pfeifer, L.V.C. Rees, S.K.K. Unger, J. Kärger, Science 272, 702 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    J. Kärger, T. Binder, C. Chmelik, F. Hibbe, H. Krautscheid, R. Krishna, J. Weitkamp, Nat. Mater. 13, 333 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    E.M. Nestorovich, C. Danelon, M. Winterhalter, S.M. Bezrukov, Proc. Nat. Acad. Sci. 99, 9789 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    C. Hilty, M. Winterhalter, Phys. Rev. Lett. 86, 5624 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    R.M.M. Smeets, U.F. Keyser, D. Krapf, M.Y. Wu, N.H. Dekker, C. Dekker, Nano Lett. 6, 89 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    P.S. Burada, P. Hänggi, F. Marchesoni, G. Schmid, P. Talkner, Chem. Phys. Chem. 10, 45 (2009)Google Scholar
  29. 29.
    P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    S. Redner, A guide to first-passage processes (Cambridge University Press, 2001)Google Scholar
  31. 31.
    M. Muthukumar, Polymer translocation (CRC Press, 2011)Google Scholar
  32. 32.
    Q.H. Wei, C. Bechinger, P. Leiderer, Science 287, 625 (2000)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Caspi, D. Zbaida, H. Cohen, M. Elbaum, Nano Lett. 11, 3728 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    S.W. Kowalczyk, L. Kapinos, T.R. Blosser, T. Magalhẽs, P. van Nies, R.Y.H. Lim, C. Dekker, Nat. Nanotechol. 6, 433 (2011)ADSCrossRefGoogle Scholar
  35. 35.
    Y. Wang, Y. Wang, D.R. Breed, V.N. Manoharan, L. Feng, A.D. Hollingsworth, M. Weck, D.J. Pine, Nature 491, 51 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    K.D. Schleicher, S.L. Dettmer, L.E. Kapinos, S. Pagliara, U.F. Keyser, S. Jeney, R.Y.H. Lim, Nat. Nanotechol. 9, 525 (2014)ADSCrossRefGoogle Scholar
  37. 37.
    B. Lin, M. Meron, B. Cui, S.A. Rice, Phys. Rev. Lett. 94, 216001 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    V.J. Anderson, H.N.W. Lekkerkerker, Nature 416, 811 (2002)ADSCrossRefGoogle Scholar
  39. 39.
    U. Gasser, E.R. Weeks, A. Schofield, P.N. Pusey, D.A. Weitz, Science 292, 258 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    H. Wang, T.-S. Chung, Y.W. Tong, K. Jeyaseelan, A. Armugam, Z. Chen, M. Hong, W. Meier, Small 8, 1185 (2012)CrossRefGoogle Scholar
  41. 41.
    R.J. Macfarlane, B. Lee, M.R. Jones, N. Harris, G.C. Schatz, C.A. Mirkin, Science 334, 204 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    L. Di Michele, E. Eiser, Phys. Chem. Chem. Phys. 15, 3115 (2013)CrossRefGoogle Scholar
  43. 43.
    L. Di Michele, F. Varrato, J. Kotar, S.H. Nathan, G. Foffi, E. Eiser, Nature Comm. 4, 2007 (2013)CrossRefGoogle Scholar
  44. 44.
    D. Psaltis, S.R. Quake, C.H. Yang, Nature 442, 381 (2006)ADSCrossRefGoogle Scholar
  45. 45.
    L. Mazutis, J. Gilbert, W.L. Ung, D.A Weitz, A.D. Griffiths, J.A. Heyman, Nat. Protoc. 8, 870 (2013)CrossRefGoogle Scholar
  46. 46.
    S. Pagliara, C. Chimerel, R. Langford, D.G.A.L. Aarts, U.F. Keyser, Lab Chip 11, 3365 (2011)CrossRefGoogle Scholar
  47. 47.
    S. Pagliara, K. Franze, C.R. McClain, G.W. Wylde, C.L. Fisher, R.J.M. Franklin, A.J. Kabla, U.F. Keyser, K.J. Chalut, Nat. Mater. 13, 638 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    D.R. Gossett, H.T.K. Tse, S.A. Lee, Y. Ying, A.G. Lindgren, O.O. Yang, J. Rao, A.T. Clark, D. Di Carlo, Proc. Natl. Acad. Sci. USA 109, 7630 (2012)ADSCrossRefGoogle Scholar
  49. 49.
    A.E. Ekpenyong, G. Whyte, K. Chalut, S. Pagliara, F. Lautenschläger, C. Fiddler, S. Paschke, U.F. Keyser, E.R. Chilvers, J. Guck, PLoS One 7, e45237 (2012)ADSCrossRefGoogle Scholar
  50. 50.
    S. Kim, A.M. Streets, R.R. Lin, S.R. Quake, S. Weiss, D.S. Majumdar, Nat. Methods 8, 242 (2011)CrossRefGoogle Scholar
  51. 51.
    J.E. Curtis, B.A. Koss, D.G. Grier, Opt. Commun. 207, 169 (2002)ADSCrossRefGoogle Scholar
  52. 52.
    D. Grier, Nature 424, 810 (2003)ADSCrossRefGoogle Scholar
  53. 53.
    M. Padgett, R. Bowman, Nat. Photonics 5, 343 (2011)ADSCrossRefGoogle Scholar
  54. 54.
    M. Padgett, R. Di Leonardo, Lab Chip 11, 1196 (2011)CrossRefGoogle Scholar
  55. 55.
    S. Pagliara, C. Schwall, U.F. Keyser, Adv. Mater. 25, 844 (2014)CrossRefGoogle Scholar
  56. 56.
    S. Pagliara, S.L. Dettmer, U.F. Keyser, Phys. Rev. Lett. 113, 048102 (2014)ADSCrossRefGoogle Scholar
  57. 57.
    S.L. Dettmer, S. Pagliara, K. Misiunas, U.F. Keyser, Phys. Rev. E 89, 062305 (2014)ADSCrossRefGoogle Scholar
  58. 58.
    A.M. Berezhkovskii, S.M. Bezrukov, Chem. Phys. 319, 342 (2005)ADSCrossRefGoogle Scholar
  59. 59.
    A.M. Berezhkovskii, S.M. Bezrukov, Biophys. J. 88, L17 (2005)CrossRefGoogle Scholar
  60. 60.
    A.B. Kolomeisky, Phys. Rev. Lett. 98, 048105 (2007)ADSCrossRefGoogle Scholar
  61. 61.
    W.R. Bauer, W. Nadler, Proc. Natl. Acad. Sci. USA 103, 11446 (2006)ADSCrossRefGoogle Scholar
  62. 62.
    A. Zilman, Biophys. J. 96, 1235 (2009)ADSCrossRefGoogle Scholar
  63. 63.
    K.A. Telari, B.R. Rogers, H. Fang, L. Shen, R.A. Weller, D.N. Braski, J. Vac. Sci. Technol. B 20, 590 (2002)CrossRefGoogle Scholar
  64. 64.
    S. Pagliara, C. Chimerel, D.G.A.L. Aarts, R. Langford, U.F. Keyser, Prog. Coll. Pol. Sci. 139, 45 (2012)Google Scholar
  65. 65.
    R. Bowman, V. D’Ambrosio, E. Rubino, O. Jedrkiewicz, P. Di Trapani, M.J. Padgett, Eur. Phys. J. Special Topics 199, 149 (2011)ADSCrossRefGoogle Scholar
  66. 66.
    A. Bietsch, B. Michel, J. Appl. Phys. 88, 4310 (2000)ADSCrossRefGoogle Scholar
  67. 67.
    J. Hu, R.G. Beck, T. Deng, R.M. Westervelt, K.D. Maranowski, A.C. Gossard, G.M. Whitesides, Appl. Phys. Lett. 71, 2020 (1997)ADSCrossRefGoogle Scholar
  68. 68.
    S. Pagliara, L. Persano, A. Camposeo, R. Cingolani, D. Pisignano, Nanotechnology 18, 175302 (2007)ADSCrossRefGoogle Scholar
  69. 69.
    S.L. Dettmer, U.F. Keyser, S. Pagliara, Rev. Sci. Instrum. 85, 023708 (2014)ADSCrossRefGoogle Scholar
  70. 70.
    A.R. Prakash, S. Adamia, V. Sieben, P. Pilarski, L.M. Pilarski, C.J. Backhouse, Sensor. Actuat. B-Chem. 113, 398 (2006)CrossRefGoogle Scholar
  71. 71.
    P. Bungay, H. Brenner, Int. J. Multiphase Flow 1, 25 (1973)CrossRefzbMATHGoogle Scholar
  72. 72.
    H.C. Berg, Random walks in biology (Princeton University Press, 1993)Google Scholar
  73. 73.
    O. Dudko, A. Berezhkovskii, G. Weiss, J. Chem. Phys. 121, 1562 (2004)ADSCrossRefGoogle Scholar
  74. 74.
    A.M. Berezhkovskii, M.A. Pustovoit, S.M. Bezrukov, J.Chem. Phys. 116, 9952 (2002)ADSCrossRefGoogle Scholar
  75. 75.
    A.M. Berezhkovskii, M.A. Pustovoit, S.M. Bezrukov, J. Chem. Phys. 119, 3943 (2003)ADSCrossRefGoogle Scholar
  76. 76.
    R. Dutzler, Y.F. Wang, P.J. Rizkallah, J.P. Rosenbusch, T. Schirmer, Structure 4, 127 (1996)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • S. Pagliara
    • 1
    • 2
  • S. L. Dettmer
    • 3
  • K. Misiunas
    • 1
  • L. Lea
    • 1
  • Y. Tan
    • 1
  • U. F. Keyser
    • 1
  1. 1.Cavendish LaboratoryCambridgeUK
  2. 2.Department of Biosciences, College of Life and Environmental SciencesUniversity of ExeterExeterUK
  3. 3.Institute for Theoretical Physics - University of CologneCologneGermany

Personalised recommendations