Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 14, pp 3095–3111 | Cite as

Giant enhancement of hydrodynamically enforced entropic trapping in thin channels

  • S. MartensEmail author
  • A. V. Straube
  • G. Schmid
  • L. Schimansky-Geier
  • P. Hänggi
Regular Article
Part of the following topical collections:
  1. Brownian Motion in Confined Geometries. Guest Editors: S.M. Bezrukov, L. Schimansky-Geier and G. Schmid (Eds.)

Abstract

Using our generalized Fick-Jacobs approach [1, 2] and extensive Brownian dynamics simulations, we study particle transport through three-dimensional periodic channels of different height. Directed motion is caused by the interplay of constant bias acting along the channel axis and a pressure-driven flow. The tremendous change of the flow profile shape in channel direction with the channel height is reflected in a crucial dependence of the mean particle velocity and the effective diffusion coefficient on the channel height. In particular, we observe a giant suppression of the effective diffusivity in thin channels; four orders of magnitude compared to the bulk value.

Keywords

Probability Density Function European Physical Journal Special Topic Channel Height Plane Wall Constant Bias 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Martens, A.V. Straube, G. Schmid, L. Schimansky-Geier, P. Hänggi, Phys. Rev. Lett. 110, 010601 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    S. Martens, G. Schmid, A.V. Straube, L. Schimansky-Geier, P. Hänggi, Eur. Phys. J. Special Topics 222, 2453 (2013)ADSCrossRefGoogle Scholar
  3. 3.
    P.S. Dittrich, A. Manz, Nat. Rev. Drug. Discov. 5, 210 (2006)CrossRefGoogle Scholar
  4. 4.
    F.J. Keil, R. Krishna, M.-O. Coppens, Rev. Chem. Eng. 16, 71 (2000)CrossRefGoogle Scholar
  5. 5.
    A.M. Berezhkovskii, S.M. Bezrukov, Biophys. J. 88, L17 (2005)CrossRefGoogle Scholar
  6. 6.
    A.M. Berezhkovskii, S.M. Bezrukov, Phys. Rev. Lett. 100, 038104 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    M. Firnkes, D. Pedone, J. Knezevic, M. Döblinger, U. Rant, Nano Lett. 10, 2162 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    J. Voldman, Annu. Rev. Biomed. Eng. 8, 425 (2006)CrossRefGoogle Scholar
  9. 9.
    P. Hänggi, F. Marchesoni, Rev. Mod. Phys. 81, 387 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    D. Reguera, A. Luque, P.S. Burada, G. Schmid, J.M. Rubí, P. Hänggi, Phys. Rev. Lett. 108, 020604 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    R. Harrison, P. Todd, S. Rudge, D. Petrides, Bioseparations Science and Engineering (Oxford University Press, USA, 2002)Google Scholar
  12. 12.
    K.D. Dorfman, Rev. Mod. Phys. 82, 2903 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    G. Giupponi, I. Pagonabarraga, Phys. Rev. Lett. 106, 248304 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    M. MacDonald, G. Spalding, K. Dholakia, Nature 426, 421 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    L. Bogunovic, R. Eichhorn, J. Regtmeier, D. Anselmetti, P. Reimann, Soft Matter 8, 3900 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    C. Kettner, P. Reimann, P. Hänggi, F. Müller, Phys. Rev. E 61, 312 (2000)ADSCrossRefGoogle Scholar
  17. 17.
    X.T. Zheng, J.C. Wu, B.Q. Ai, F.G. Li, Eur. Phys. J. B 86, 479 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    V.Y. Zitserman, A.M. Berezhkovskii, A.E. Antipov, Y.A. Makhnovskii, J. Chem. Phys. 135, 121102 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    L. Dagdug, I. Pineda, J. Chem. Phys. 137, 024107 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    T. Motz, G. Schmid, P. Hänggi, D. Reguera, J.M. Rubí, J. Chem. Phys. 141, 074104 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    D. Reguera, G. Schmid, P.S. Burada, J.M. Rubí, P. Reimann, P. Hänggi, Phys. Rev. Lett. 96, 130603 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    P. Burada, P. Hänggi, F. Marchesoni, G. Schmid, P. Talkner, Chem. Phys. Chem. 10, 45 (2009)Google Scholar
  23. 23.
    J.M. Rubí, D. Reguera, Chem. Phys. 375, 518 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    P.K. Ghosh, P. Hänggi, F. Marchesoni, S. Martens, F. Nori, L. Schimansky-Geier, G. Schmid, Phys. Rev. E 85, 011101 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    S.L. Dettmer, S. Pagliara, K. Misiunas, U.F. Keyser, Rev. Sci. Instrum. 85, 023708 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    S.L. Dettmer, S. Pagliara, K. Misiunas, U.F. Keyser, Phys. Rev. E 98, 062305 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    M. Jacobs, Diffusion Processes, 2nd edn. (Springer, New York, 1967)Google Scholar
  28. 28.
    R. Zwanzig, J. Phys. Chem. 96, 3926 (1992)CrossRefGoogle Scholar
  29. 29.
    D. Reguera, J.M. Rubí, Phys. Rev. E 64, 061106 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    P. Kalinay, J.K. Percus, Phys. Rev. E 74, 041203 (2006)ADSCrossRefMathSciNetGoogle Scholar
  31. 31.
    P. Kalinay, Phys. Rev. E 84, 011118 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    S. Martens, G. Schmid, L. Schimansky-Geier, P. Hänggi, Phys. Rev. E 83, 051135 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    S. Martens, G. Schmid, L. Schimansky-Geier, P. Hänggi, Chaos 21, 047518 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    S. Martens, I.M. Sokolov, L. Schimansky-Geier, J. Chem. Phys. 136, 111102 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    P.K. Ghosh, P. Hänggi, F. Marchesoni, F. Nori, G. Schmid, Phys. Rev. E 86, 021112 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    P.K. Ghosh, P. Hänggi, F. Marchesoni, F. Nori, G. Schmid, Europhys. Lett. 98, 50002 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    M. Schindler, P. Talkner, M. Kostur, P. Hänggi, Physica A 385, 46 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    G. Volpe, I. Buttinoni, D. Vogt, H.-J. Kummerer, C. Bechinger, Soft Matter 7, 8810 (2011)ADSCrossRefGoogle Scholar
  39. 39.
    C. Scholz, F. Wirner, J. Götz, U. Rüde, G.E. Schröder-Turk, K. Mecke, C. Bechinger, Phys. Rev. Lett. 109, 264504 (2012)ADSCrossRefGoogle Scholar
  40. 40.
    C. Scholz, F. Wirner, Y. Li, C. Bechinger, Exp. Fluids 53, 1327 (2012b)CrossRefGoogle Scholar
  41. 41.
    B.Q. Ai, Y.F. He, F.G. Li, W.R. Zhong, J. Chem. Phys. 138, 154107 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    F.G. Li, B.Q. Ai, J. Stat. Mech. Theor. Exp. 2014, P04027 (2014)CrossRefMathSciNetGoogle Scholar
  43. 43.
    M. Tarama, A.M. Menzel, H. Löwen, Phys. Rev. E 90, 032907 (2014)ADSCrossRefGoogle Scholar
  44. 44.
    J.C.T. Eijkel, A. van den Berg, Microfluid. Nanofluid. 1, 249 (2005)CrossRefGoogle Scholar
  45. 45.
    J. Happel, H. Brenner, Low Reynolds number hydrodynamics: with special applications to particulate media (Prentice-Hall, Inc., Engelwood Cliffs, N.J., 1965)Google Scholar
  46. 46.
    M.R. Maxey, J.J. Riley, Phys. Fluids 26, 883 (1983)ADSCrossRefzbMATHGoogle Scholar
  47. 47.
    H. Bhatia, G. Norgard, V. Pascucci, P.-T. Bremer, IEEE Trans. Visual. Comput. Graphics 19, 1386 (2013)CrossRefGoogle Scholar
  48. 48.
    A.V. Straube, J. Phys. Condens. Matter 23, 184122 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    N. Laachi, M. Kenward, E. Yariv, K.D. Dorfman, Europhys. Lett. 80, 50009 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    P.S. Burada, G. Schmid, P. Talkner, P. Hänggi, D. Reguera, J.M. Rubí, BioSystems 93, 16 (2008)CrossRefGoogle Scholar
  51. 51.
    I.M. Sokolov, Eur. Phys. J. 31, 1353 (2010)CrossRefzbMATHGoogle Scholar
  52. 52.
    H. Bruus, Theoretical Microfluidics (Oxford University Press, 2008)Google Scholar
  53. 53.
    E. Lauga, A.D. Stroock, H.A. Stone, Phys. Fluids 16, 3051 (2004)ADSCrossRefMathSciNetGoogle Scholar
  54. 54.
    G. Taylor, Phil. Trans. R. Soc. Lond. A 219, 186 (1953)Google Scholar
  55. 55.
    R. Aris, Phil. Trans. R. Soc. Lond. A 235, 67 (1956)Google Scholar
  56. 56.
    A. Zöttl, H. Stark, Eur. Phys. J. E 36, 4 (2013)ADSCrossRefGoogle Scholar
  57. 57.
    D. Di Carlo, D. Irimia, R.G. Tompkins, M. Toner, Proc. Nat. Ac. Sc. USA 104, 18892 (2007)ADSCrossRefGoogle Scholar
  58. 58.
    N. Liron, S. Mochon, J. Eng. Math. 10, 287 (1976)CrossRefzbMATHGoogle Scholar
  59. 59.
    S. Reddig, H. Stark, J. Chem. Phys. 138, 234902 (2013)ADSCrossRefGoogle Scholar
  60. 60.
    P. Hänggi, H. Thomas, Phys. Rep. 88, 207 (1982)ADSCrossRefMathSciNetGoogle Scholar
  61. 61.
    H. Risken, The Fokker-Planck Equation, 2nd edn. (Springer, Berlin, 1989)Google Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • S. Martens
    • 1
    Email author
  • A. V. Straube
    • 2
  • G. Schmid
    • 3
  • L. Schimansky-Geier
    • 2
  • P. Hänggi
    • 3
    • 4
  1. 1.Department of PhysicsTechnische Universität BerlinBerlinGermany
  2. 2.Department of PhysicsHumboldt-Universität zu BerlinBerlinGermany
  3. 3.Department of PhysicsUniversität AugsburgAugsburgGermany
  4. 4.Nanosystems Initiative MunichMünchenGermany

Personalised recommendations