Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 14, pp 3079–3093 | Cite as

Engineering tube shapes to control confined transport

  • D. Reguera
  • J. M. Rubi
Review
Part of the following topical collections:
  1. Brownian Motion in Confined Geometries. Guest Editors: S.M. Bezrukov, L. Schimansky-Geier and G. Schmid (Eds.)

Abstract

Transport of particles in confined structures can be modeled by means of diffusion in a potential of entropic nature. The entropic transport model proposes a drift-diffusion kinetic equation for the evolution of the probability density in which the diffusion coefficient depends on position and the drift term contains an entropic force. The model has been applied to analyze transport in single cavities and through periodic structures of different shape, and to investigate the nature of non-equilibrium fluctuations as well. The transport characteristics depends strongly on the contour of the region through which particles move, which defines the entropic potential. We show that the form of the entropic potential can be properly designed to optimize and govern how molecules diffuse and get drifted in tortuous channels. The shape of a tube or channel can be smartly engineered to control transport for the desired application.

Keywords

European Physical Journal Special Topic Stochastic Resonance Brownian Particle Tube Shape Entropic Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.P. Brangwynne, G.H. Koenderink, F.C. MacKintosh, D.A. Weitz, Trends Cell Biol. 19, 423 (2009)CrossRefGoogle Scholar
  2. 2.
    B. Hille, Ion Channels of Excitable Membranes (Sinauer, Sunderland, MA, 2001)Google Scholar
  3. 3.
    R. Barrer, Zeolites and Clay Minerals as Sorbents and Molecular Sieves (Academic Press, London, 1978)Google Scholar
  4. 4.
    J. Han, H.G. Craighead, Science 288, 1026 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    K. Dill, H. Chan, Nat. Struct. Biol. 4, 10 (1997)CrossRefGoogle Scholar
  6. 6.
    N.G. van Kampen, Stochastic Processes in Physics and Chemistry (North Holland, Amsterdam, 1997)Google Scholar
  7. 7.
    M. Jacobs, Diffusion Processes (Springer Verlag, New York, 1967)Google Scholar
  8. 8.
    R. Zwanzig, J. Phys. Chem. B 96, 3926 (1992)CrossRefGoogle Scholar
  9. 9.
    D. Reguera, J.M. Rubí, Phys. Rev. E 64, 061106 (2001)ADSCrossRefGoogle Scholar
  10. 10.
    D. Reguera, G. Schmid, P.S. Burada, J.M. Rubi, P. Reimann, P. Hänggi, Phys. Rev. Lett. 96, 130603 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    P.S. Burada, G. Schmid, D. Reguera, M.H. Vainstein, J.M. Rubi, P. Hänggi, Phys. Rev. Lett. 101, 130602 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    P.S. Burada, G. Schmid, D. Reguera, J.M. Rubi, P. Hänggi, EPL 87, 50003 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    P.S. Burada, G. Schmid, D. Reguera, J.M. Rubi, P. Hänggi, Eur. Phys. J. B 69, 11 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    P.S. Burada, G. Schmid, D. Reguera, J.M. Rubí, P. Hänggi, Phys. Rev. E 75, 051111 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    P.S. Burada, G. Schmid, P. Talkner, P. Hänggi, D. Reguera, J.M. Rubí, Bio Systems 93, 16 (2008)CrossRefGoogle Scholar
  16. 16.
    P. Kalinay, Phys. Rev. E 80, 031106 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    L. Dagdug, M.-V. Vazquez, A.M. Berezhkovskii, S.M. Bezrukov, J. Chem. Phys. 133, 034707 (2010)ADSCrossRefGoogle Scholar
  18. 18.
    C. Bustamante, J.F. Marko, E.D. Siggia, S. Smith, Science 265, 1599 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    J.C. Crocker, J.A. Matteo, A.D. Dinsmore, A.G. Yodh, Phys. Rev. Lett. 82, 4352 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    S. Kjelstrup, J.M. Rubi, I. Pagonabarraga, D. Bedeaux, Phys. Chem. Chem. Phys. 15, 19405 (2013)CrossRefGoogle Scholar
  21. 21.
    G. Hammes, Thermodynamics and kinetics for the biological sciences (John Wiley & Sons, Inc., New York, 2000)Google Scholar
  22. 22.
    P. Kalinay, J.K. Percus, Phys. Rev. E 74, 041203 (2006)ADSCrossRefMathSciNetGoogle Scholar
  23. 23.
    S. Martens, G. Schmid, L. Schimansky-Geier, P. Hänggi, Phys. Rev. E 83, 051135 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    D. Reguera, J.M. Rubi, J.M.G. Vilar, J. Phys. Chem. B 109, 21502 (2005)CrossRefGoogle Scholar
  25. 25.
    M.-V. Vazquez, A.M. Berezhkovskii, L. Dagdug, J. Chem. Phys. 129, 046101 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    I. Pineda, M.-V. Vazquez, A.M. Berezhkovskii, L. Dagdug, J. Chem. Phys. 135, 224101 (2011)ADSCrossRefGoogle Scholar
  27. 27.
    L. Dagdug, M.-V. Vazquez, A.M. Berezhkovski, V.Y. Zitserman, S.M. Bezrukov, J. Chem. Phys. 136, 204106 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    L. Dagdug, I. Pineda, J. Chem. Phys. 137, 024107 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    P. Reimann, C. Van den Broeck, H. Linke, P. Hänggi, J.M. Rubi, A. Pérez-Madrid, Phys. Rev. E 65, 031104 (2002)ADSCrossRefGoogle Scholar
  30. 30.
    P. Reimann, C. Van den Broeck, H. Linke, P. Hänggi, J.M. Rubi, A. Pérez-Madrid, Phys. Rev. Lett. 87, 10602 (2001)ADSCrossRefGoogle Scholar
  31. 31.
    D. Reguera, P. Reimann, P. Hänggi, J.M. Rubi, Europhys. Lett. 57, 644 (2002)ADSCrossRefGoogle Scholar
  32. 32.
    J.M. Rubi, D. Reguera, Chem. Phys. 375, 518 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    R.D. Astumian, Am. J. Phys. 74, 683 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    M.H. Vainstein, J.M. Rubi, Phys. Rev. E 75, 31106 (2007)ADSCrossRefGoogle Scholar
  35. 35.
    D. Reguera, A. Luque, P.S. Burada, G. Schmid, J.M. Rubí, P. Hänggi, Phys. Rev. Lett. 108, 020604 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    J.M.G. Vilar, J.M. Rubi, Physica A 264, 1 (1999)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  1. 1.Departament de Física Fonamental, Facultat de FísicaUniversitat de BarcelonaBarcelonaSpain

Personalised recommendations