The European Physical Journal Special Topics

, Volume 223, Issue 13, pp 2989–2999 | Cite as

Photoelectron multipliers based on avalanche pnipn structures

Regular Article Nonlinear Partial Differential Equations
  • 40 Downloads
Part of the following topical collections:
  1. Advanced Computational and Experimental Techniques in Nolinear Dynamics. Guest Editors: Elbert E.N. Macau and Carlos L. Pando Lambruschini (Eds.)

Abstract

We present a new physical principle to design an optoelectronic device, which consists of a multilayered semiconductor structure, where the necessary conditions for generation of photoelectrons are met, such that it will enable sequential avalanche multiplication of electrons and holes inside two depletion slabs created around the pn junctions of a reverse biased pnipn structure. The mathematical model and computer simulations of this Semiconductor Photo-electron Multiplier (SPEM) for different semiconductor materials are presented. Its performance is evaluated and compared with that of conventional devices. The Geiger operational mode is briefly discussed which may be used in Silicon Photomultiplier (SiPM) as an elementary photo detector to enhance its performance.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hamamatzu Photonics, Photomultiplier Tubes. Electron Tube Center, 1994, 245p. and Hamamatzu, Photomultiplier Tubes and Assemblies, 2012, 76pGoogle Scholar
  2. 2.
    K. Yamomoto, K. Yamamura, K. Sato, et al., Development of Multi-Pixel Photon Counter (MPPC) IEEE, 2007 Nucl Sci Symp. Honolulu, HawaiiGoogle Scholar
  3. 3.
    G. Bondarenko, B. Dolgoshein, V. Golovin, Nuclear Phys. B 61, 347 (1998)CrossRefGoogle Scholar
  4. 4.
    P. Buzhan, et al., NIM A 504, 48 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    R. Mirzoyan, E. Popova, SiPM for Atmospheric Cherenkov Telescopes, Proceeding SPIE 8621, Optical Components and Materials X, 862106 (Mar. 2013)Google Scholar
  6. 6.
    V. Golovin, V. Sveliev, NIM A 518, 560 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    N. Otte, The Silicon Photomultiplier – A new device for High Energy Physics, Astroparticle Physics, Industrial and Medical Applications SNIC Symposium, Stanford, California – 3–6 April 2006, p. 1Google Scholar
  8. 8.
    M. Teshima, P. Lipari, A. Santangelo, EUSO (The Extreme Universe Space Observatory)- Scientific Objective, Proceedings of ICRC 2003, p. 1069Google Scholar
  9. 9.
    N. Otte, et al., Nucl. Phys. B 150, 144 (2006)CrossRefGoogle Scholar
  10. 10.
    K.A. Lukin, H.A. Cerdeira, A.A. Colavita, Appl. Phys. Lett. 71(17), 2484 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    K.A. Lukin, H.A. Cerdeira, A.A. Colavita, IEEE Trans. ED. 43(3), 473 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    K.A. Lukin, H.A. Cerdeira, A.A. Colavita, P.P. Maksymov, Int. J. Mod. Simulation 23(2), 77 (2003)Google Scholar
  13. 13.
    K.A. Lukin, P.P. Maksymov, A method for evaluating of semiconductor structure with abrupt pn-junction. Radiophysics and Electronics. -Kharkov: IRE NASU 4(1), 87 (1999) (in Russian)Google Scholar
  14. 14.
    S.M. Sze, Physics of Semiconductor Devices (New Jersey, 1981), p. 456Google Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • K. A. Lukin
    • 1
  • P. P. Maksymov
    • 1
  • H. A. Cerdeira
    • 2
  1. 1.Institute for Radiophysics and ElectronicsNational Academy of Sciences of UkraineKharkovUKraine
  2. 2.Instituto de Física TeóricaUniversidade Estadual PaulistaSão PauloBrazil

Personalised recommendations