The European Physical Journal Special Topics

, Volume 223, Issue 13, pp 2857–2867 | Cite as

Self-organization of antiperiodic oscillations

  • J. G. Freire
  • C. Cabeza
  • A. C. Marti
  • T. Pöschel
  • J. A. C. Gallas
Regular Article Bifurcations and Chaos
Part of the following topical collections:
  1. Advanced Computational and Experimental Techniques in Nolinear Dynamics. Guest Editors: Elbert E.N. Macau and Carlos L. Pando Lambruschini (Eds.)

Abstract

Antiperiodic oscillations forming infinite cascades of spirals were recently found experimentally and numerically in the control parameter space of an autonomous electronic circuit. They were discovered while recording one specific voltage of the circuit. Here, we show that such regular self-organization may be measured in any of the four variables of the circuit. Although the relative size of individual phases, their boundaries and the number of peaks of each characteristic oscillation depends on the physical quantity used to record them, the global structural organization of the complex phase diagrams is an invariant of the circuit. Tunable families of antiperiodic oscillations cast fresh light on new intricate behavior of nonlinear systems and open the possibility of studying hitherto unobserved phenomena.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Urzagasti, D. Laroze, H. Pleiner, Eur. Phys. J. Special Topics 223, 141 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    J.G. Freire, J.A.C. Gallas, Chaos Sol. Frac. 59, 129 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    A. Celestino, C. Manchein, H.A. Albuquerque, M.W. Beims, Commun. Nonlinear Sci. Numer. Simulat. 19, 139 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    A. Hoff, T. Silva, C. Manchein, H.A. Albuquerque, Phys. Lett. A 378, 171 (2014)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    D. Laroze, P.G. Siddheshwar, H. Pleiner, Commun. Nonlinear Sci. Numer. Simul. 18, 2436 (2013)ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    J.G. Freire, C. Cabeza, A. Marti, T. Pöschel, J.A.C. Gallas, Nature Sci. Rep. 3, 1958 (2013)ADSGoogle Scholar
  7. 7.
    C. Cabeza, C.A. Briozzo, R. Garcia, J.G. Freire, A.C. Marti, J.A.C. Gallas, Chaos Sol. Frac. 52, 59 (2013)ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    A. Sack, J.G. Freire, E. Lindberg, T. Pöschel, J.A.C. Gallas, Nature Sci. Rep. 3, 3350 (2013)ADSGoogle Scholar
  9. 9.
    W. Façanha, B. Oldeman, L. Glass, Phys. Lett. A 377, 1264 (2013)ADSCrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    E.S. Medeiros, R.O. Medrano, I.L. Caldas, S.L.T. de Souza, Phys. Lett. A 377, 628 (2013)ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    S.L.T. de Souza, A.A. Lima, I.L. Caldas, R.O. Medrano, Z.O. Guimarães-Filho, Phys. Lett. A 376, 1290 (2012)ADSCrossRefMATHGoogle Scholar
  12. 12.
    L. Gardini, F. Tramontana, S. Banerjee, Math. Comput. Simul. 95, 137 (2013)CrossRefMathSciNetGoogle Scholar
  13. 13.
    L. Junges, J.A.C. Gallas, Phys. Lett. A 376, 2109 (2012)ADSCrossRefMATHGoogle Scholar
  14. 14.
    L. Junges, T. Pöschel, J.A.C. Gallas, Eur. Phys. J. D 67, 149 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    R. Barrio, F. Blesa, S. Serrano, A. Shilnikov, Phys. Rev. E 84, 035201(R) (2011)ADSCrossRefGoogle Scholar
  16. 16.
    R. Barrio, F. Blesa, A. Dena, S. Serrano, Comput. Math. Appl. 62, 4140 (2011)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    R. Vitolo, P. Glendinning, J.A.C. Gallas, Phys. Rev. E 84, 016216 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    C. Stegemann, H.A. Albuquerque, R.M. Rubinger, P.C. Rech, Chaos 21, 033105 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    D.F.M. Oliveira, M. Robnik, Phys. Rev. E 83, 026202 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    J.G. Freire, J.A.C. Gallas, Phys. Lett. A 375, 1097 (2011)ADSCrossRefMATHGoogle Scholar
  21. 21.
    J.G. Freire, J.A.C. Gallas, Phys. Chem. Chem. Phys. 13, 12191 (2011)CrossRefGoogle Scholar
  22. 22.
    J.G. Freire, T. Pöschel, J.A.C. Gallas, Europhys. Lett. 100, 48002 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    Z.T. Zhusubaliyev, E. Mosekilde, Physica D 238, 589 (2009)ADSCrossRefMathSciNetMATHGoogle Scholar
  24. 24.
    J.G. Freire, J.A.C. Gallas, Phys. Rev. E 82, 037202 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    A. Celestino, C. Manchein, H.A. Albuquerque, M.W. Beims, Phys. Rev. Lett. 106, 234101 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    C. Bonatto, J.A.C. Gallas, Phys. Rev. Lett. 101, 054101 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    C. Bonatto, J.A.C. Gallas, Phil. Trans. Royal Soc. London Series A 366, 505 (2008)ADSCrossRefMathSciNetMATHGoogle Scholar
  28. 28.
    For a survey see J.A.C. Gallas, Int. J. Bif. Chaos 20, 197 (2010), and references thereinGoogle Scholar
  29. 29.
    J.A.C. Gallas, Physica A 211, 57 (1994)ADSCrossRefMathSciNetGoogle Scholar
  30. 30.
    E.V. Viana, R.M. Rubinger, H.A. Albuquerque, A.G. de Oliveira, G.M. Ribeiro, Chaos 20, 023110 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    D.F.M. Oliveira, E.D. Leonel, Phys. Lett. A 376, 3630 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    D.F.M. Oliveira, E.D. Leonel, New J. Phys. 13, 123012 (2011)ADSCrossRefGoogle Scholar
  33. 33.
    E.N. Lorenz, Physica D 237, 1689 (2008)ADSCrossRefMathSciNetMATHGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • J. G. Freire
    • 1
    • 2
  • C. Cabeza
    • 3
  • A. C. Marti
    • 2
    • 3
  • T. Pöschel
    • 1
    • 2
  • J. A. C. Gallas
    • 1
    • 2
    • 3
    • 4
    • 5
  1. 1.Institute for Multiscale SimulationsFriedrich-Alexander-UniversitätErlangenGermany
  2. 2.Departamento de FísicaUniversidade Federal da ParaíbaJoão PessoaBrazil
  3. 3.Instituto de Física, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  4. 4.Instituto de Altos Estudos da ParaíbaJoão PessoaBrazil
  5. 5.Department of MathematicsImperial College LondonLondonUK

Personalised recommendations