Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 13, pp 2759–2773 | Cite as

How do small differences in nonidentical pulse-coupled oscillators induce great changes in their synchronous behavior?

  • G. M. Ramírez Ávila
  • J. Kurths
  • J. L. Guisset
  • J. L. Deneubourg
Review
Part of the following topical collections:
  1. Advanced Computational and Experimental Techniques in Nolinear Dynamics. Guest Editors: Elbert E.N. Macau and Carlos L. Pando Lambruschini (Eds.)

Abstract

We studied synchronization and clustering in two types of pulse-coupled oscillators, namely, integrate-and-fire and light-controlled oscillators. We considered for the analysis globally coupled oscillators, either by a mean-field type coupling or a distance-dependent one. Using statistically diverse measures such as the transient, probability of total synchronization, fraction of clustered oscillators, mean size, and mean number of clusters, we describe clustering and synchronous behavior for populations of nonidentical oscillators and perform a comparative analysis of the behavioral differences and similitudes among these types of oscillators. Considering a mean-field approach, we found high probability of total synchronization in all cases for integrate-and-fire oscillators; on the other hand, in a more realistic situation, for light-controlled oscillators, i.e., when oscillators do not fire instantaneously, the probability of total synchronization decreases drastically for small differences among the oscillators and subsequently, for larger differences, it slightly increases. When the coupling strength depends on the distance, the probability of total synchronization plummets dramatically with the number of oscillators especially in the case of integrate-and-fire oscillators. The latter constitutes an interesting result because it indicates that in realistic situations, the probability of total synchronization is not very high for a population of pulse-coupled oscillators; this entails that its utilization as a paradigmatic model of total synchronization does not suit well, especially when the coupling depends on the distance. This article is dedicated to our good friend and colleague Hilda Cerdeira as a tribute to the scientific work developed over her career.

Keywords

Coupling Strength European Physical Journal Special Topic Period Criterion Synchronization Time Cluster Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge University Press, New York, 2001)Google Scholar
  2. 2.
    S. Boccaletti, J. Kurths, G. Osipov, D.L. Valladares, C.S. Zhou, Phys. Rep. 366(1–2), 1 (2002)CrossRefMathSciNetADSzbMATHGoogle Scholar
  3. 3.
    S.C. Manrubia, A.S. Mikhailov, D.H. Zanette, Emergence of Dynamical Order (World Scientific Publishing Co. Pte. Ltd., Singapore, 2004)Google Scholar
  4. 4.
    A. Balanov, N. Janson, D. Postnov, O. Sosnovtseva, Synchronization: From Simple to Complex (Springer Berlin, Berlin, 2007)Google Scholar
  5. 5.
    S. Boccaletti, The Synchronized Dynamics of Complex Systems (Elsevier, 2008)Google Scholar
  6. 6.
    A. Stefanski, Determining Thresholds of Complete Synchronization, and Application (World Scientific, 2009)Google Scholar
  7. 7.
    C.W. Wu, Synchronization in Complex Networks of Nonlinear Dynamical Systems (World Scientific Publishing Co. Pte. Ltd, London, 2007)Google Scholar
  8. 8.
    A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Phys. Rep. 469(3), 93 (2008)CrossRefMathSciNetADSGoogle Scholar
  9. 9.
    C. Peskin, Mathematical Aspects of Heart Physiology (1975)Google Scholar
  10. 10.
    N. Masuda, K. Aihara, Phys. Rev. E 64(1), 051906 (2001)CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    G.M. Ramírez Ávila, J.L. Deneubourg, J.L. Guisset, N. Wessel, J. Kurths, Europhys. Lett. 94(6), 60007 (2011)CrossRefADSGoogle Scholar
  12. 12.
    R.E. Mirollo, S.H. Strogatz, SIAM J. Appl. Math. 50(6), 1645 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Y. Kuramoto, Physica D 50(1), 15 (1991)CrossRefADSzbMATHGoogle Scholar
  14. 14.
    C. Van Vreeswijk, L.F. Abbott, G.B. Ermentrout, J. Comput. Neurosci. 1(4), 313 (1994)CrossRefGoogle Scholar
  15. 15.
    A. Corral, C.J. Pérez, A. Díaz-Guilera, A. Arenas, Phys. Rev. Lett. 75(20), 3697 (1995)CrossRefADSGoogle Scholar
  16. 16.
    S. Bottani, Phys. Rev. Lett. 74(21), 4189 (1995)CrossRefADSGoogle Scholar
  17. 17.
    S.R. Campbell, D.L. Wang, C. Jayaprakash, Neural Comput. 11(7), 1595 (1999)CrossRefGoogle Scholar
  18. 18.
    H. Kori, Phys. Rev. E 68(2), 021919 (2003)CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    S. Sarkar, Chaos 20(4), 043108 (2010)CrossRefADSGoogle Scholar
  20. 20.
    L. Prignano, O. Sagarra, P.M. Gleiser, A. Díaz-Guilera, Int. J. Bifurcat. Chaos 22(7), 1250179 (2012)CrossRefGoogle Scholar
  21. 21.
    L. Prignano, O. Sagarra, A. Díaz-Guilera, Phys. Rev. Lett. 110(11), 114101 (2013)CrossRefADSGoogle Scholar
  22. 22.
    J.B. Buck, Science 81(2101), 339 (1935)CrossRefADSGoogle Scholar
  23. 23.
    J. Buck, E. Buck, Science 159(3821), 1319 (1968)CrossRefADSGoogle Scholar
  24. 24.
    F.E. Hanson, J.F. Case, E. Buck, J. Buck, Science 174, 161 (1971)CrossRefADSGoogle Scholar
  25. 25.
    J. Copeland, A. Moiseff, J. Insect Behav. 8(3), 381 (1995)CrossRefGoogle Scholar
  26. 26.
    A. Moiseff, J. Copeland, J. Insect Behav. 13(4), 597 (2000)CrossRefGoogle Scholar
  27. 27.
    V.R. Viviani, Ann. Entomol. Soc. Am. 94(1), 129 (2001)CrossRefMathSciNetGoogle Scholar
  28. 28.
    B. Ermentrout, J. Math. Biol. 29(6), 571 (1991)CrossRefMathSciNetzbMATHGoogle Scholar
  29. 29.
    G.M. Ramírez Ávila, J.L. Guisset, J.L. Deneubourg, Physica D 182(3–4), 254 (2003)CrossRefMathSciNetADSzbMATHGoogle Scholar
  30. 30.
    G.M. Ramírez Ávila, J.L. Guisset, J.L. Deneubourg, J. Phys. CS 23, 252 (2005)ADSGoogle Scholar
  31. 31.
    N. Rubido, C. Cabeza, S. Kahan, G.M. Ramírez Ávila, A.C. Marti, Eur. Phys. J. D 62(1), 51 (2011)CrossRefADSGoogle Scholar
  32. 32.
    G.M. Ramírez Ávila, J.L. Guisset, J.L. Deneubourg, Int. J. Bifurcat. Chaos 17(12), 4453 (2007)CrossRefGoogle Scholar
  33. 33.
    G.M. Ramírez Ávila, J. Kurths, J.L. Guisset, J.L. Deneubourg, Phys. Rev. E 82(5), 056207 (2010)CrossRefADSGoogle Scholar
  34. 34.
    N. Rubido, C. Cabeza, A.C. Marti, G.M. Ramírez Ávila, Phil. Trans. R. Soc. A 367, 3267 (2009)CrossRefADSzbMATHGoogle Scholar
  35. 35.
    J.L. Guisset, G.M. Ramírez Ávila, J.L. Deneubourg, Rev. Bol. Fis. 7, 102 (2001)Google Scholar
  36. 36.
    J.L. Guisset, J.L. Deneubourg, G.M. Ramírez Ávila [arXiv.nlin.AO/0206036] (2002)
  37. 37.
    S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.U. Hwang, Phys. Rep. 424(4–5), 175 (2006)CrossRefMathSciNetADSGoogle Scholar
  38. 38.
    S. Bottani, Phys. Rev. E 54(3), 2334 (1996)CrossRefADSGoogle Scholar
  39. 39.
    A.T. Winfree, J. Theor. Biol. 16, 15 (1967)CrossRefGoogle Scholar
  40. 40.
    Y. Kuramoto, I. Nishikawa, J. Stat. Phys. 49(3–4), 569 (1987)CrossRefMathSciNetADSzbMATHGoogle Scholar
  41. 41.
    K. Kaneko, Prog. Theor. Phys. 74(5), 1033 (1985)CrossRefADSzbMATHGoogle Scholar
  42. 42.
    G. Perez, S. Sinha, H.A. Cerdeira, Physica D 63(3–4), 341 (1993)CrossRefADSzbMATHGoogle Scholar
  43. 43.
    A.S. Pikovsky, J. Kurths, Physica D 76(4), 411 (1994)CrossRefMathSciNetADSzbMATHGoogle Scholar
  44. 44.
    M. Banaji, P. Glendinning, Phys. Lett. A 251(5), 297 (1999)CrossRefMathSciNetADSzbMATHGoogle Scholar
  45. 45.
    I.Z. Kiss, Y. Zhai, J.L. Hudson, Phys. Rev. Lett. 88(23), 238301 (2002)CrossRefADSGoogle Scholar
  46. 46.
    S. de Monte, F. d’Ovidio, E. Mosekilde, Phys. Rev. Lett. 90(5), 4102 (2003)CrossRefGoogle Scholar
  47. 47.
    A.S. Pikovsky, M.G. Rosenblum, J. Kurths, Europhys. Lett. 34(3), 165 (1996)CrossRefADSGoogle Scholar
  48. 48.
    J.P. Gleeson, Europhys. Lett. 73(3), 328 (2006)CrossRefMathSciNetADSGoogle Scholar
  49. 49.
    N.F. Rulkov, L. Tsimring, M.L. Larsen, M. Gabbay, Phys. Rev. E 74(5), 056205 (2006)CrossRefMathSciNetADSGoogle Scholar
  50. 50.
    G.M. Ramírez Ávila, J.L. Guisset, J.L. Deneubourg, Rev. Bol. Fis. 12, 1 (2006)Google Scholar
  51. 51.
    G.M. Ramírez Ávila, J.L. Guisset, J.L. Deneubourg, Rev. Bol. Fis. 13, 1 (2007)Google Scholar
  52. 52.
    S. Depickère, G.M. Ramírez Ávila, D. Fresneau, J.L. Deneubourg, Ecol. Entomol. 33(2), 225 (2008)CrossRefGoogle Scholar
  53. 53.
    M. Nixon, M. Fridman, E. Ronen, A.A. Friesem, N. Davidson, I. Kanter, Phys. Rev. Lett. 108(21), 214101 (2012)CrossRefADSGoogle Scholar
  54. 54.
    A. Mauroy, R. Sepulchre, Chaos 18(3), 037122 (2008)CrossRefMathSciNetADSGoogle Scholar
  55. 55.
    D. Foster, J. Foster, M. Paczuski, P. Grassberger, Phys. Rev. E 81(4), 046115 (2010)CrossRefMathSciNetADSGoogle Scholar
  56. 56.
    J. Wu, L. Jiao, R. Li, W. Chen, Physica D 240(24), 1972 (2011)CrossRefMathSciNetADSzbMATHGoogle Scholar
  57. 57.
    M. Escalona-Moran, M.G. Cosenza, P. Guillen, P. Coutin, Chaos Soliton Fract. 31(4), 820 (2007)CrossRefADSGoogle Scholar
  58. 58.
    P. Muruganandam, F.F. Ferreira, H.F. El-Nashar, H.A. Cerdeira, Pramana-J. Phys. 70(6), 1143 (2008)CrossRefADSGoogle Scholar
  59. 59.
    H.F. El-Nashar, H.A. Cerdeira, Commun. Nonlinear Sci. 16(11), 4508 (2011)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • G. M. Ramírez Ávila
    • 1
  • J. Kurths
    • 2
    • 3
    • 4
  • J. L. Guisset
    • 5
  • J. L. Deneubourg
    • 5
  1. 1.Instituto de Investigaciones Físicas, Casilla 8635Universidad Mayor de San AndrésLa PazBolivia
  2. 2.Institut für PhysikHumboldt-Universität zu BerlinBerlinGermany
  3. 3.Potsdam Institut für KlimafolgenforschungPotsdamGermany
  4. 4.Institute for Complex Systems and Mathematical BiologyUniversity of AberdeenAberdeenUK
  5. 5.Interdisciplinary Center for Nonlinear Phenomena and Complex Systems & Unité d’Ecologie SocialeUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations