Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 13, pp 2649–2664 | Cite as

Adaptive pinning control: A review of the fully decentralized strategy and its extensions

  • L. F. R. Turci
  • P. De Lellis
  • E. E. N. Macau
  • M. Di Bernardo
  • M. M. R. Simões
Review
Part of the following topical collections:
  1. Advanced Computational and Experimental Techniques in Nolinear Dynamics. Guest Editors: Elbert E.N. Macau and Carlos L. Pando Lambruschini (Eds.)

Abstract

In this work, we review recent developments related to the problem of guiding a complex network of agents toward a synchronized state. Specifically, we focus on adaptive pinning control strategies, expounding those developed by the authors in the context of the existing literature, in which only a small fraction of the network nodes is directly controlled. The methodologies described herein are adaptive in the sense that the control and coupling gains are updated on the basis of the local mismatch with the desired trajectory and between coupled nodes, respectively. A selection of adaptive strategies recently proposed in the literature is reviewed, and the main stability results are expounded. As a numerical validation, the selected approaches are applied to control an ensemble of coupled mobile agents moving in a formation.

Keywords

Periodic Orbit Coupling Strength European Physical Journal Special Topic Network Node Control Gain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Belykh, I. Belykh, M. Hasler, Chaos 16, 015102 (2006)ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    I. Belykh, M. Hasler, M. Lauret, H. Nijmeijer, Int. J. Bif. Chaos 15, 3423 (2005)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    H. Gao, X. Meng, T. Chen, J. Lam, SIAM J. Cont. Optimiz. 48, 3643 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    H.J.C. Huijberts, H. Nijmeijer, R.M.A. Willens, Int. J. Robust Nonlinear Contr. 10, 363 (2000)CrossRefzbMATHGoogle Scholar
  5. 5.
    J. Lü, X. Yu, G. Chen, Physica A 51, 787 (2004)Google Scholar
  6. 6.
    H. Nijmeijer, Physica D 154, 219 (2001)ADSCrossRefMathSciNetzbMATHGoogle Scholar
  7. 7.
    L.M. Pecora, T.L. Caroll, Phys. Rev. Lett. 64, 821 (1990)ADSCrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    C.W. Wu, IEEE Trans. Autom. Contr. 51, 1207 (2006)CrossRefGoogle Scholar
  9. 9.
    C.W. Wu, L.O. Chua, IEEE Trans. Circ. Syst. I 42, 430 (1995)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    R.M. Murray, R. Olfati-Saber, IEEE Trans. Autom. Contr. 49, 1520 (2004)CrossRefMathSciNetGoogle Scholar
  11. 11.
    M. Cao, A.S. Morse, B.D.O. Anderson, SIAM J. Contr. Optimiz. 47, 575 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    B. Kozma, A. Barrat, Phys. Rev. E 77, 016102 (2008)ADSCrossRefGoogle Scholar
  13. 13.
    B. Liu, D.J. Hill, SIAM J. Contr. Optimiz. 49, 315 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    R. Olfati-Saber, J.A. Fax, R.M. Murray, Proc. IEEE 95, 215 (2007)CrossRefGoogle Scholar
  15. 15.
    W. Wang, J.-J.E. Slotine, IEEE Trans. Autom. Control 51, 1156 (2006)CrossRefMathSciNetGoogle Scholar
  16. 16.
    P. DeLellis, M. diBernardo, F. Garofalo, D. Liuzza, Appl. Math. Comput. 217, 988 (2010)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    M. Huang, J.H. Manton, SIAM J. Contr. Optimiz. 48, 134 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  18. 18.
    X. Li, X. Wang, G. Chen, IEEE Trans. Circ. Syst. I 51, 2074 (2004)CrossRefMathSciNetGoogle Scholar
  19. 19.
    W. Yu, G. Chen, J. Lü, Automatica 45, 429 (2009)CrossRefzbMATHGoogle Scholar
  20. 20.
    X. Wang, G. Chen, Physica A 310, 521 (2002)ADSCrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    A. Rahmani, M. Ji, M. Mesbahi, M. Egerstedt, SIAM J. Contr. Optimiz. 48, 162 (2009)CrossRefMathSciNetzbMATHGoogle Scholar
  22. 22.
    P. DeLellis, M. di Bernardo, M. Porfiri, Chaos 21, 033119 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    P. DeLellis, M. di Bernardo, F. Garofalo, IEEE Trans. Circ. Syst. I 60, 3033 (2013)Google Scholar
  24. 24.
    V. Mwaffo, P. DeLellis, M. Porfiri, Chaos 24, 013101 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    L. Xiang, J.J.H. Zhu, Nonlinear Dyn. 64, 339 (2011)CrossRefMathSciNetGoogle Scholar
  26. 26.
    L. Xiang, Z. Chen, Z. Liu, F. Chen, Z. Yuan, J. Phys. A 40, 14369 (2007)ADSCrossRefMathSciNetzbMATHGoogle Scholar
  27. 27.
    L. Xiang, Z.X. Liu, Z.Q. Chen, F. Chen, Z.Z. Yuan, Physica A 379, 298 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    F. Sorrentino, M. di Bernardo, F. Garofalo, G. Chen, Phys. Rev. E 75, 046103 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    M. Porfiri, M. di Bernardo, Automatica 44, 3100 (2008)CrossRefzbMATHGoogle Scholar
  30. 30.
    J. Cortes, S. Martinez, F. Bullo, IEEE Trans. Autom. Contr. 51, 1289 (2006)CrossRefMathSciNetGoogle Scholar
  31. 31.
    M. Lindhe, P. Ogren, K.H. Johansson, Flocking with obstacle avoidance: A new distributed coordination algorithm based on Voronoi partitions. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation (2005), p. 1785Google Scholar
  32. 32.
    R. Olfati-Saber, IEEE Trans. Autom. Contr. 51, 401 (2006)CrossRefMathSciNetGoogle Scholar
  33. 33.
    I.D. Couzin, J. Krause, N.R. Franks, S.A. Levin, Nature 433, 513 (2005)ADSCrossRefGoogle Scholar
  34. 34.
    P. DeLellis, M. Porfiri, E.M. Bollt, Phys. Rev. E 87, 022818 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    B. Nabet, N.E. Leonard, I.D. Couzin, S.A. Levin, J. Nonlinear Sci. 19, 399 (2009)ADSCrossRefMathSciNetzbMATHGoogle Scholar
  36. 36.
    D.A. Paley, N.E. Leonard, R. Sepulchre, D. Grunbaum, J.K. Parrish, IEEE Contr. Syst. Mag. 27, 89 (2007)CrossRefGoogle Scholar
  37. 37.
    S. Ghosh, G. Rangarajan, S. Sinha, EPL 92, 40012 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    J. Yu, C. Hu, H. Jiang, Z. Teng, Neurocomputing 74, 1776 (2011)CrossRefGoogle Scholar
  39. 39.
    P. DeLellis, G. Polverino, G. Ustuner, N. Abaid, S. Macrì, E.M. Bollt, M. Porfiri, Scientific Reports 4, 3723 (2014)ADSCrossRefGoogle Scholar
  40. 40.
    T. Chen, X. Liu, W. Lu, IEEE Trans. Circ. Syst. I 54, 1317 (2007)ADSCrossRefMathSciNetGoogle Scholar
  41. 41.
    L. Wang, H.P. Dai, H. Dong, Y.Y. Cao, Y.X. Sun, Eur. Phys. J. B 61, 335 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    J. Lu J. Zhou, J. Lü, Automatica 44, 996 (2008)CrossRefzbMATHGoogle Scholar
  43. 43.
    P. De Lellis, M. di Bernardo, F. Garofalo, Chaos 18, 037110 (2008)ADSCrossRefMathSciNetGoogle Scholar
  44. 44.
    P. DeLellis, M. diBernardo, F. Garofalo, Automatica 45, 1312 (2009)CrossRefMathSciNetGoogle Scholar
  45. 45.
    P. DeLellis, M. di Bernardo, L.F.R. Turci, Fully adaptive pinning control of complex networks. In Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS) (2010), p. 685Google Scholar
  46. 46.
    L.F.R. Turci, E.E.N. Macau, Int. J. Bif. Chaos 22, 1 (2012)CrossRefMathSciNetGoogle Scholar
  47. 47.
    L.F.R. Turci, E.E.N. Macau, Chaos 22, 033151 (2012)ADSCrossRefMathSciNetGoogle Scholar
  48. 48.
    T. Chen, X. Liu, Network synchronization with an adaptive coupling strength, http://arxiv.org/abs/math/0610580v1 (2006)Google Scholar
  49. 49.
    P. DeLellis, M. diBernardo, G. Russo, IEEE Trans. Circ. Syst. I 58, 576 (2011)CrossRefMathSciNetGoogle Scholar
  50. 50.
    C.D. Godsil, G. Royle, Algebraic Graph Theory (Springer, 2001)Google Scholar
  51. 51.
    M. Krstic, I. Kanellakopoulos, P. Kokotovic, Nonlinear and Adaptive Control Design (John Wiley and Sons, 1995)Google Scholar
  52. 52.
    L.F.R. Turci, E.E.N. Macau, Phys. Rev. E 84, 011120 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    M. Porfiri, F. Fiorilli, Chaos 19, 013122 (2009)ADSCrossRefMathSciNetGoogle Scholar
  54. 54.
    E. Ott, C. Grebogi, J.A. Yorke, Phys. Rev. Lett. 64, 1196 (1990)ADSCrossRefMathSciNetzbMATHGoogle Scholar
  55. 55.
    K. Fallahi, H. Leung, Comm. Nonlinear Sci. Numer. Simul. 15, 368 (2010)ADSCrossRefzbMATHGoogle Scholar
  56. 56.
    N. Singh, A. Sinha, Opt. Lasers Eng. 48, 398 (2010)CrossRefGoogle Scholar
  57. 57.
    O.I. Moskalenko, A.A. Koronovskii, A.E. Hramov, Phys. Lett. A 374, 2925 (2010)ADSCrossRefzbMATHGoogle Scholar
  58. 58.
    M. Eisencraft, R.D. Fanganiello, J.M.V. Grzybowski, D.C. Soriano, R. Attux, A.M. Batista, E.E.N. Macau, L.H.A. Monteiro, J.M.T. Romano, R. Suyama, T. Yoneyama, Comm. Nonlinear Sci. Numer. Simul. 17, 4707 (2012)ADSCrossRefGoogle Scholar
  59. 59.
    J.V. Grzybowski, E.E. Neher Macau, T. Yoneyama, J. Phys. A: Math. Theor. 44, 175103 2011ADSCrossRefGoogle Scholar
  60. 60.
    P. Bartissol, L.O. Chua, IEEE Trans. Circ. Syst. 35, 1512 (1988)CrossRefMathSciNetGoogle Scholar
  61. 61.
    M. Frasca, A. Buscarino, A. Rizzo, L. Fortuna, S. Boccaletti, Phys. Rev. Lett. 100, 044102 (2008)ADSCrossRefGoogle Scholar
  62. 62.
    D.J. Stilwell, E.M. Bollt, D.G. Roberson, SIAM J. Appl. Dyn. Syst. 5, 140 (2006)ADSCrossRefMathSciNetzbMATHGoogle Scholar
  63. 63.
    V.N. Belykh, I.V. Belykh, M. Hasler, Physica D: Nonlinear Phenom. 195, 159 (2004)ADSCrossRefMathSciNetzbMATHGoogle Scholar
  64. 64.
    L. Wang, Y.-X. Sun, J. Stat. Mech.: Theory Exper. 2009, P11005 (2009)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • L. F. R. Turci
    • 1
  • P. De Lellis
    • 2
  • E. E. N. Macau
    • 3
  • M. Di Bernardo
    • 2
  • M. M. R. Simões
    • 1
  1. 1.Science and Technology InstituteFederal University of AlfenasPoços de CaldasBrazil
  2. 2.Department of Electrical Engineering and Information TechnologyUniversity of Naples Federico IINaplesItaly
  3. 3.Laboratory of Computing and Applied MathematicsInstituto National de Pesquisas Espaciais (INPE), São José dos CamposSão PauloBrazil

Personalised recommendations