Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 10, pp 2057–2062 | Cite as

FRET lasing from self-assembled DNA tetrahedral nanostructures suspended in optofluidic droplet resonators

  • M. Aas
  • E. Özelci
  • A. Jonáš
  • A. Kiraz
  • H. Liu
  • C. Fan
  • Q. Chen
  • X. Fan
Regular Article WGM Combined with Fluorescence
Part of the following topical collections:
  1. Taking Detection to the Limit: Biosensing with Optical Microcavities

Abstract

We demonstrate Förster resonance energy transfer (FRET) lasing from self-assembled tetrahedral DNA complexes labeled with Cy3 and Cy5 dyes and suspended as a gain medium in aqueous microdroplet cavities deposited on a superhydrophobic surface. Threshold fluence and differential efficiency are characterized for DNA complexes containing 1Cy3-3Cy5 and 3Cy3-1Cy5. We demonstrate that at a constant Cy5 concentration, average threshold fluence is reduced 3 to 8 times and average differential efficiency is enhanced 6 to 30 times for 3Cy3-1Cy5 as compared to 1Cy3-3Cy5. Using 3Cy3-1Cy5 nanostructures, FRET lasing is observed at very low concentrations down to ∼ 1 μM. This work shows that optofluidic microlasers based on droplet resonators can be combined with DNA nanotechnology to explore applications in bio/chemical sensing and novel photonic devices.

Keywords

Droplet Size European Physical Journal Special Topic Diameter Droplet Superhydrophobic Surface Gain Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Monat, P. Domachuk, B.J. Eggleton, Nat. Photon. 1, 106 (2007)CrossRefADSGoogle Scholar
  2. 2.
    X. Fan, I.M. White, Nat. Photon. 5, 591 (2011)CrossRefADSGoogle Scholar
  3. 3.
    X. Fan, S.H. Yun, Nat. Meth. 11, 141 (2014)CrossRefGoogle Scholar
  4. 4.
    Y. Sun, X. Fan. Angew, Chem. Int. Ed. 51, 1236 (2012)CrossRefGoogle Scholar
  5. 5.
    W. Lee, X. Fan, Anal. Chem. 84, 9558 (2012)Google Scholar
  6. 6.
    M.C. Gather, S.H. Yun, Nat. Photon. 5, 406 (2011)CrossRefADSGoogle Scholar
  7. 7.
    Z. Li, Z. Zhang, T. Emery, A. Scherer, D. Psaltis, Opt. Express 14, 696 (2006)CrossRefADSGoogle Scholar
  8. 8.
    S.I. Shopova, H. Zhou, X. Fan, Appl. Phys. Lett. 90, 221101 (2007)CrossRefADSGoogle Scholar
  9. 9.
    S.-X. Qian, J.B. Snow, H.M. Tzeng, R.K. Chang, Science, 231 (1986)Google Scholar
  10. 10.
    V.V. Datsyuk, J. Mol. Liq. 84, 1308 (2001)Google Scholar
  11. 11.
    A. Kiraz, A. Kurt, M.A. Dündar, A.L. Demirel, Appl. Phys. Lett. 89, 081118 (2006)CrossRefADSGoogle Scholar
  12. 12.
    F. Vollmer, L. Yang, Nanophotonics 1, 267 (2012)CrossRefADSGoogle Scholar
  13. 13.
    Q. Chen, H. Liu, W. Lee, Y. Sun, D. Zhu, H. Pei, C. Fan, X. Fan, Lab Chip 13, 3351 (2013)CrossRefGoogle Scholar
  14. 14.
    E. Özelci, M. Aas, A. Jonáš, A. Kiraz, Laser Phys. Lett. 11, 045802 (2014)CrossRefADSGoogle Scholar
  15. 15.
    M.Y. Yüce, A.L. Demirel, F. Menzel, Langmuir 21, 5073 (2005)CrossRefGoogle Scholar
  16. 16.
    I.M. White, H. Oveys, X. Fan, Opt. Lett. 31, 1319 (2006)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • M. Aas
    • 1
  • E. Özelci
    • 1
  • A. Jonáš
    • 2
  • A. Kiraz
    • 1
  • H. Liu
    • 3
  • C. Fan
    • 3
  • Q. Chen
    • 4
  • X. Fan
    • 4
  1. 1.Department of PhysicsKoç UniversityIstanbulTurkey
  2. 2.Department of PhysicsIstanbul Technical UniversityIstanbulTurkey
  3. 3.Division of Physical Biology, and Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina
  4. 4.Department of Biomedical EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations