The European Physical Journal Special Topics

, Volume 223, Issue 12, pp 2593–2610

A random growth model for power grids and other spatially embedded infrastructure networks

Regular Article
Part of the following topical collections:
  1. Resilient Power Grids and Extreme Events

Abstract

We propose a model to create synthetic networks that may also serve as a narrative of a certain kind of infrastructure network evolution. It consists of an initialization phase with the network extending tree-like for minimum cost and a growth phase with an attachment rule giving a trade-off between cost-optimization and redundancy. Furthermore, we implement the feature of some lines being split during the grid's evolution. We show that the resulting degree distribution has an exponential tail and may show a maximum at degree two, suitable to observations of real-world power grid networks. In particular, the mean degree and the slope of the exponential decay can be controlled in partial independence. To verify to which extent the degree distribution is described by our analytic form, we conduct statistical tests, showing that the hypothesis of an exponential tail is well-accepted for our model data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
  2. 2.
    A. Barabási, R. Albert, Science 286, 509 (1999)ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    M. Barthélemy, Phys. Reports 499, 1 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    O. Borůvka, Elektrotechnický Obz. 15, 153 (1926)Google Scholar
  5. 5.
    O. Borůvka, Elektrotechnický Obz. 15, 153 (1926)Google Scholar
  6. 6.
    C. Bracquemond, et al., Laboratoire Jean Kuntzmann, Appl. Math. Comput. Sci., Techn. Report 6 (2002)Google Scholar
  7. 7.
    S. Buldyrev, et al., Nature 464, 1025 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    D. Callaway, et al., Phys. Rev. E 64, 041902 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    E.W. Dijkstra, Numer. Math. 1, 269 (1959)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51.4, 1079 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    P. Erdos, A. Rényi, Publ. Math. Debrecen 6, 290 (1959)MathSciNetGoogle Scholar
  12. 12.
    K. Eriksen, et al., Phys. Rev. Lett. 90, 148701 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    E.N. Gilbert, Annals Math. Stat., 1141 (1959)Google Scholar
  14. 14.
    C. Herrmann, et al., Phys. Rev. E 68, 1 (2003)CrossRefGoogle Scholar
  15. 15.
    V.N. Kublanovskaya, USSR Comput. Math. Math. Phys. 1, 637 (1962)CrossRefGoogle Scholar
  16. 16.
    J. Kruskal, Proc. Am. Math. Soc. 5 (1956)Google Scholar
  17. 17.
    P. Menck, J. Kurths, Nonlinear Dyn. Electron. Syst., 144 (2012)Google Scholar
  18. 18.
    P. Menck, et al., Nat. Comm. 5, 3969 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    M. Molloy, B. Reed, Random Struct. Algorithms 1 (1995)Google Scholar
  20. 20.
    A. Motter, Y. Lai, Phys. Rev. E. 66, 065102 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    M. Newman, S. Strogatz, D. Watts, Phys. Rev. E 64, 026118 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    M. Newman, SIAM Rev. 45, 167 (2003)ADSCrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    G. Pagani, M. Aiello, Smart Grid, IEEE Trans. 2, 538 (2011)CrossRefGoogle Scholar
  24. 24.
    G. Pagani, M. Aiello, Phys. A Stat. Mech. Its Appl. 1 (2013)Google Scholar
  25. 25.
    R. Prim, Bell Syst. Tech. J. 36, 1389 (1957)CrossRefGoogle Scholar
  26. 26.
    M. Rosas-Casals, Topological Complexity of the Electricity Transmission Network (UPC, Barcelona, 2009)Google Scholar
  27. 27.
    M. Rosvall, et al., Phys. Rev. E 67, 028701 (2005)Google Scholar
  28. 28.
    Z. Wang, A. Scaglione, R. Thomas, IEEE, Trans. Smart Grid 1, 28 (2010)CrossRefGoogle Scholar
  29. 29.
    P. Sen, et al., Phys. Rev. E 67, 036106 (2003)ADSCrossRefGoogle Scholar
  30. 30.
    D. Watts, S. Strogatz, Nature 393, 440 (1998)ADSCrossRefGoogle Scholar
  31. 31.
    B.M. Waxman, IEEE J. Selected Areas Comm. 6.9, 1617 (1988)CrossRefGoogle Scholar
  32. 32.
    D. Witthaut, M. Timme, New J. Phys. 8, 083036 (2012)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • Paul Schultz
    • 1
    • 2
  • Jobst Heitzig
    • 1
  • Jürgen Kurths
    • 1
    • 2
    • 3
  1. 1.Potsdam Institute for Climate Impact ResearchPotsdamGermany
  2. 2.Department of PhysicsHumboldt University BerlinBerlinGermany
  3. 3.Institute for Complex Systems and Mathematical Biology, University of AberdeenAberdeenUK

Personalised recommendations