The European Physical Journal Special Topics

, Volume 223, Issue 12, pp 2527–2547

Supply networks: Instabilities without overload

  • Debsankha Manik
  • Dirk Witthaut
  • Benjamin Schäfer
  • Moritz Matthiae
  • Andreas Sorge
  • Martin Rohden
  • Eleni Katifori
  • Marc Timme
Regular Article
Part of the following topical collections:
  1. Resilient Power Grids and Extreme Events

Abstract

Supply and transport networks support much of our technical infrastructure as well as many biological processes. Their reliable function is thus essential for all aspects of life. Transport processes involving quantities beyond the pure loads exhibit alternative collective dynamical options compared to processes exclusively characterized by loads. Here we analyze the stability and bifurcations in oscillator models describing electric power grids and demonstrate that these networks exhibit instabilities without overloads. This phenomenon may well emerge also in other sufficiently complex supply or transport networks, including biological transport processes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Marris, Nature 454, 570 (2008)CrossRefGoogle Scholar
  2. 2.
    J.A. Turner, Science 285, 687 (1999)CrossRefGoogle Scholar
  3. 3.
    T. Pesch, H.-J. Allelein, J.-F. Hake, Eur. Phys. J. Special Topics 223(12), 2561 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    D. Heide, L. von Bremen, M. Greiner, C. Hoffmann, M. Speckmann, S. Bofinger, Renewable Energy 35, 2483 (2010)CrossRefGoogle Scholar
  5. 5.
    F. Böttcher, S. Barth, J. Peinke, Stoch. Environ. Res. Ris. Assess. 21, 299 (2007)CrossRefGoogle Scholar
  6. 6.
    P. Milan, M. Wächter, J. Peinke, Phys. Rev. Lett. 110, 138701 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    A.R. Bergen, D.J. Hill, IEEE Trans. Power Apparatus Syst. PAS-100, 25 (1981)CrossRefGoogle Scholar
  8. 8.
    D. Hill, G. Chen, Power systems as dynamic networks, in Proc. of the 2006 IEEE International Symposium on Circuits and Systems (2006), p. 725Google Scholar
  9. 9.
    G. Filatrella, A.H. Nielsen, N.F. Pedersen, Eur. Phys. J. B 61, 485 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    J. Machowski, J. Bialek, J. Bumby, Power system dynamics, stability and control (John Wiley & Sons, New York, 2008)Google Scholar
  11. 11.
    M. Rohden, A. Sorge, M. Timme, D. Witthaut, Phys. Rev. Lett. 109, 064101 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    D. Witthaut, M. Timme, New J. Phys. 14, 083036 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    M. Rohden, A. Sorge, D. Witthaut, M. Timme, Chaos 24, 013123 (2014)ADSCrossRefGoogle Scholar
  14. 14.
    F. Dörfler, M. Chertkov, F. Bullo, Proc. National Acad. Sci. 110, 2005 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    A.E. Motter, S.A. Myers, M. Anghel, T. Nishikawa, Nat. Phys. 9, 191 (2013)CrossRefGoogle Scholar
  16. 16.
    P.J. Menck, J. Heitzig, J. Kurths, H.J. Schellnhuber, Nat. Comm. 5 (2014)Google Scholar
  17. 17.
    Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, in International Symposium on Mathematical Problems in Theoretical Physics, edited by H. Araki (Springer, New York, 1975), Lecture Notes in Physics, Vol. 39, p. 420Google Scholar
  18. 18.
    S.H. Strogatz, Phys. D: Nonlinear Phenom. 143, 1 (2000)ADSCrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    J.A. Acebrón, L.L. Bonilla, C.J. Pérez Vicente, F. Ritort, R. Spigler, Rev. Mod. Phys. 77, 137 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    P. Kundur, Power System Stability and Control (McGraw-Hill, New York, 1994)Google Scholar
  21. 21.
    Y. Susuki, I. Mezic, T. Hikihara, Global swing instability of multimachine power systems, in Decision and Control, CDC 2008, 47th IEEE Conference on (IEEE, 2008), p. 2487Google Scholar
  22. 22.
    Y. Susuki, I. Mezić, T. Hikihara, J. Nonlinear Sci. 21(3), 403 (2011)ADSCrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    F. Dorfler, F. Bullo, Circ. Syst. I: Regul. Papers, IEEE Trans. 60(1), 150 (2013)MathSciNetGoogle Scholar
  24. 24.
    A.R. Bergen, D.J. Hill, Power Appar. Syst., IEEE Trans. (1), 25 (1981)Google Scholar
  25. 25.
    K. Schmietendorf, J. Peinke, R. Friedrich, O. Kamps [arXiv:1307.2748] (2013)
  26. 26.
    H.D. Chiang, F.F. Wu, P.P. Varaiya, Circ. Syst., IEEE Trans. 34(2), 160 (1987)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    C.J. Perez, F. Ritort, J. Phys. A: Math. General 30, 8095 (1997)ADSCrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    J. Howard, Scholarpedia 8, 3627 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    M.E.J. Newman, Networks – An introduction (Oxford University Press, Oxford, 2010)Google Scholar
  30. 30.
    H.K. Khalil, J. Grizzle, Nonlinear Systems, Vol. 3 (Prentice hall Upper Saddle River, 2002)Google Scholar
  31. 31.
    M. Levi, F.C. Hoppenstaedt, W.L. Miranker, Quart. Appl. Math. 36, 167 (1978)MathSciNetGoogle Scholar
  32. 32.
    H. Risken, The Fokker-Planck Equation (Springer, Berlin Heidelberg, 1996)Google Scholar
  33. 33.
    P.J. Menck, J. Heitzig, N. Marwan, J. Kurths, Nat. Phys. 9, 89 (2013)CrossRefGoogle Scholar
  34. 34.
    Y. Kuznetsov, Elements of Applied Bifurcation Theory, Vol. 112 (Springer, 1998)Google Scholar
  35. 35.
    P.C. Parks, IMA J. Math. Contr. Inf. 9(4), 275 (1992)ADSCrossRefMATHMathSciNetGoogle Scholar
  36. 36.
    U. for the Co-ordination of Transmission of Electricity”, Continental Europe Operation Handbook (2014)Google Scholar
  37. 37.
    P. Fairley, IEEE Spectr. 41, 22 (2004)Google Scholar
  38. 38.
    U.S.-Canada Power System Outage Task Force, https://reports.energy.gov/BlackoutFinal-Web.pdf (2004)
  39. 39.
    Union for the Coordination of Transmission of Electricity, Final Report on the System Disturbance on 4 November 2006, http://www.entsoe.eu/library/publications/ce/otherreports/Final-Report-20070130.pdf (retrieved 13/10/2009) (2007)
  40. 40.
    I. Simonsen, L. Buzna, K. Peters, S. Bornholdt, D. Helbing, Phys. Rev. Lett. 100, 218701 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    W.N. Anderson Jr., T.D. Morley, Linear Multilinear A 18, 141 (1985)CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    B. Mohar, in Graph Theory, Combinatorics, and Applications 2, edited by Y. Alavi, G. Chartrand, O.R. Oellermann (Wiley, 1991), p. 871Google Scholar
  43. 43.
    M. Fiedler, Czechoslovak Math. J. 23, 298 (1973)MathSciNetGoogle Scholar
  44. 44.
    S. Fortunato, Phys. Reports 486, 75 (2010)ADSCrossRefMathSciNetGoogle Scholar
  45. 45.
    D. Braess, Unternehmensforschung 12, 258 (1968)MATHMathSciNetGoogle Scholar
  46. 46.
    D. Witthaut, M. Timme, Eur. Phys. J. B 86, 377 (2013)ADSCrossRefGoogle Scholar
  47. 47.
    S.D. Pathak, J.M. Day, A. Nair, W.J. Sawaya, M.M. Kristal, Decision Sci. 38(4), 547 (2007)CrossRefGoogle Scholar
  48. 48.
    A.M.T. Ramos, C.P.C. Prado, Phys. Rev. E 87, 012719 (2013), http://link.aps.org/doi/10.1103/PhysRevE.87.012719 URLADSCrossRefGoogle Scholar
  49. 49.
    K.H. Jensen, J. Lee, T. Bohr, H. Bruus, N. Holbrook, M. Zwieniecki, J. Royal Society Interface 8(61), 1155 (2011)CrossRefGoogle Scholar
  50. 50.
    J. Patrick, Ann. Rev. Plant Biol. 48(1), 191 (1997)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • Debsankha Manik
    • 1
  • Dirk Witthaut
    • 1
  • Benjamin Schäfer
    • 1
    • 3
  • Moritz Matthiae
    • 1
  • Andreas Sorge
    • 1
  • Martin Rohden
    • 1
  • Eleni Katifori
    • 1
    • 2
  • Marc Timme
    • 1
    • 2
  1. 1.Network Dynamics, Max Planck Institute for Dynamics and Self-Organization (MPI DS)GöttingenGermany
  2. 2.Faculty of Physics, University of GöttingenGöttingenGermany
  3. 3.Otto-von-Guericke-Universität MagdeburgMagdeburgGermany
  4. 4.Forschungszentrum Jülich, Institute for Energy and Climate Research (IEK-STE)JülichGermany

Personalised recommendations