Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 11, pp 2369–2382 | Cite as

From fracture to fragmentation: Discrete element modeling

Complexity of crackling noise and fragmentation phenomena revealed by discrete element simulations
  • Humberto A. Carmona
  • Falk K. Wittel
  • Ferenc Kun
Review
Part of the following topical collections:
  1. Dynamic Systems: From Statistical Mechanics to Engineering Applications

Abstract

Discrete element modelling (DEM) is one of the most efficient computational approaches to the fracture processes of heterogeneous materials on mesoscopic scales. From the dynamics of single crack propagation through the statistics of crack ensembles to the rapid fragmentation of materials DEM had a substantial contribution to our understanding over the past decades. Recently, the combination of DEM with other simulation techniques like Finite Element Modelling further extended the field of applicability. In this paper we briefly review the motivations and basic idea behind the DEM approach to cohesive particulate matter and then we give an overview of on-going developments and applications of the method focusing on two fields where recent success has been achieved. We discuss current challenges of this rapidly evolving field and outline possible future perspectives and debates.

Keywords

European Physical Journal Special Topic Heterogeneous Material Burst Size Hard Wall Discrete Element Modelling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H.J. Herrmann, S. Roux (eds.), Statistical Models for the Fracture of Disordered Media (Elsevier Science Publishers, Amsterdam, 1990)Google Scholar
  2. 2.
    E. Bouchaud, D. Jeulin, C. Prioul, S. Roux (eds.), Physical Aspects of Fracture (Kluwer Academic Publishers, New York, 2001)Google Scholar
  3. 3.
    M.J. Alava, P.K.V.V. Nukala, S. Zapperi, Adv. Phys. 55, 349 (2006)CrossRefADSGoogle Scholar
  4. 4.
    P.A. Cundall, O.D. Strack, Geotechnique 29, 47 (1979)CrossRefGoogle Scholar
  5. 5.
    M.P. Allen, D.J. Tildesley, Comuter Simulation of Liquids (Oxford University Press, Oxford, 1984)Google Scholar
  6. 6.
    L.D. Libersky, A.G. Petschek, Lect. Notes Phys. 395, 248 (1990)CrossRefADSGoogle Scholar
  7. 7.
    A.T. Zehnder, Fracture Mechanics, Lecture Notes in Applied and Computational Mechanics 62 (Springer, Berlin, 2012)Google Scholar
  8. 8.
    T. Belytschko, R. Gracie, M. Xu, Concurrent Coupling of Atomistic, Continuum Models, edited by J. Fisch, Multiscale Methods: Bridging the Scales in Science and Engineering (Oxford University Press, Oxford, 2010), p. 93Google Scholar
  9. 9.
    T. Belytschko, W.K. Liu, B. Moran, Non-linear Finite Elements for Continua and Structures (John Wiley & Sons Inc., New York, 2001)Google Scholar
  10. 10.
    T. Belytschko, S.P. Xiao, Int. J. Mult. Comp. Engin. 1, 115 (2003)CrossRefGoogle Scholar
  11. 11.
    A. Leonardi, F.K. Wittel, M. Mendoza, H.J. Herrmann, Comp. Part. Mech., 1 (2014)Google Scholar
  12. 12.
    E. Schlangen, E.J. Garboczi, Engrg. Fract. Mech. 57, 319 (1997)CrossRefGoogle Scholar
  13. 13.
    D. Potyondy, P. Cundall, Int. J. Rock Mech. Min. Sci. 41, 1329 (2004)CrossRefGoogle Scholar
  14. 14.
    G.A. D’Addetta, F. Kun, E. Ramm, H.J. Herrmann, Lect. Notes Phys. 568, 231 (2001)CrossRefADSGoogle Scholar
  15. 15.
    G.A. D’Addetta, F. Kun, E. Ramm, Gran. Mat. 4, 77 (2002)CrossRefzbMATHGoogle Scholar
  16. 16.
    F. Kun, H.A. Carmona, J.S. Andrade, H.J. Herrmann, Phys. Rev. Lett. 100, 094301 (2008)CrossRefADSGoogle Scholar
  17. 17.
    H.A. Carmona, F.K. Wittel, F. Kun, H.J. Herrmann, Phys. Rev. E 77, 051302 (2008)CrossRefADSGoogle Scholar
  18. 18.
    T. Pöschel, T. Schwager, Computational Granular Dynamics (Springer, Berlin, 2005)Google Scholar
  19. 19.
    F. Kun, I. Varga, S. Lennartz-Sassinek, I.G. Main, Phys. Rev. Lett. 112, 065501 (2014)CrossRefADSGoogle Scholar
  20. 20.
    F. Kun, I. Varga, S. Lennartz-Sassinek, I.G. Main, Phys. Rev. E 88, 062207 (2013)CrossRefADSGoogle Scholar
  21. 21.
    W. Salvat, N. Mariani, G. Barreto, O. Martinez, Catal. Today 107–108, 513 (2005)CrossRefGoogle Scholar
  22. 22.
    K. Bagi, Gran. Mat. 7, 31 (2005)CrossRefzbMATHGoogle Scholar
  23. 23.
    J.-F. Jerier, D. Imbault, F.-V. Donze, P. Doremus, Gran. Mat. 11, 43 (2009)CrossRefzbMATHGoogle Scholar
  24. 24.
    S. Hentz, F.V. Donze, L. Daudeville, Comput. Struct. 82 2509 (2004)CrossRefGoogle Scholar
  25. 25.
    Y.T. Feng, D.R.J. Owen, Int. J. Numer. Meth. Engng. 56, 699 (2003)CrossRefzbMATHGoogle Scholar
  26. 26.
    L. Cui, C. O’Sullivan, Gran. Matt. 5, 135 (2003)CrossRefzbMATHGoogle Scholar
  27. 27.
    S. Luding, Gran. Mat. 10, 235 (2008)CrossRefzbMATHGoogle Scholar
  28. 28.
    B.K. Mishra, C. Thornton, Int. J. Min. Process. 61, 225 (2001)CrossRefGoogle Scholar
  29. 29.
    M. Stojanova, S. Santucci, L. Vanel, O. Ramos, Phys. Rev. Lett. 112, 115502 (2014)CrossRefADSGoogle Scholar
  30. 30.
    P.R. Sammonds, P.G. Meredith, I.G. Main, Nature 359, 228 (1992)CrossRefADSGoogle Scholar
  31. 31.
    C.G. Hatton, I.G. Main, P.G. Meredith, J. Struct. Geol. 15, 1485 (1993)CrossRefADSGoogle Scholar
  32. 32.
    I. Ojala, B.T. Ngwenya, I.G. Main, S.C. Elphick, J. Geophys. Res. 108, 2268 (2003)CrossRefADSGoogle Scholar
  33. 33.
    R.C. Hidalgo, F. Kun, K. Kovács, I. Pagonabarraga, Phys. Rev. E 80, 051108 (2009)CrossRefADSGoogle Scholar
  34. 34.
    H.J. Herrmann, F.K. Wittel, F. Kun, Physica A 371, 59 (2006)CrossRefADSGoogle Scholar
  35. 35.
    J. Aström, Adv. Phys. 55, 247 (2006)CrossRefADSGoogle Scholar
  36. 36.
    D.L. Turcotte, J. Geophys. Res. 91, 1921 (1986)CrossRefADSGoogle Scholar
  37. 37.
    M. Khanal, W. Schubert, J. Tomas, Int. J. Miner. Process. 86, 104 (2008)CrossRefGoogle Scholar
  38. 38.
    K.T. Chau, X.X. Wei, R.H.C. Wong, T.X. Yu, Mech. Mater. 32, 543 (2000)CrossRefGoogle Scholar
  39. 39.
    T. Kadono, M. Arakawa, Phys. Rev. E 65, 035107(R) (2002)CrossRefADSGoogle Scholar
  40. 40.
    F. Kun, F.K. Wittel, H.J. Herrmann, B.-H. Kröplin, K.-J. Maloy, Phys. Rev. Lett. 96, 025504 (2006)CrossRefADSGoogle Scholar
  41. 41.
    J.A. Aström, F. Ouchterlony, R.P. Linna, J. Timonen, Phys. Rev. Lett. 92, 245506 (2004)CrossRefADSGoogle Scholar
  42. 42.
    H. Katsuragi, D. Sugino, H. Honjo, Phys. Rev. E 68, 046105 (2003)CrossRefADSGoogle Scholar
  43. 43.
    H. Katsuragi, S. Ihara, H. Honjo, Phys. Rev. Lett. 95, 095503 (2005)CrossRefADSGoogle Scholar
  44. 44.
    F.K. Wittel, F. Kun, H.J. Herrmann, B.-H. Kroplin, Phys. Rev. Lett. 93, 035504 (2004)CrossRefADSGoogle Scholar
  45. 45.
    F. Kun, H.J. Herrmann, Phys. Rev. E 59, 2623 (1999)CrossRefADSGoogle Scholar
  46. 46.
    G. Timár, F. Kun, H.A. Carmona, H.J. Herrmann, Phys. Rev. E 86, 016113 (2012)CrossRefADSGoogle Scholar
  47. 47.
    N.N. Myagkov, T.A. Shumikhin, Physica A 358, 423 (2005)CrossRefADSGoogle Scholar
  48. 48.
    G. Timár, J. Blömer, F. Kun, H.J. Herrmann, Phys. Rev. Lett. 104, 095502 (2010)CrossRefADSGoogle Scholar
  49. 49.
    H.A. Carmona, A.V. Guimaraes, J.S. Andrade Jr., I. Nikolakopoulos, F.K. Wittel, H.J. Herrmann (preparation)Google Scholar
  50. 50.
    E.S.C. Ching, Y.Y. Yiu, K.F. Lo, Physica A 265, 119 (1999)CrossRefADSGoogle Scholar
  51. 51.
    N. Sator, S. Mechkov, F. Sausset, Europhys. Lett. 81, 44002 (2008)CrossRefADSGoogle Scholar
  52. 52.
    N. Sator, H. Hietala, Int. J. Fract. 163, 101 (2010)CrossRefzbMATHGoogle Scholar
  53. 53.
    J.A. Aström, Phys. Rev. E 80, 046113 (2009)CrossRefADSGoogle Scholar
  54. 54.
    M.J. Alava, P.K.V.V. Nukala, S. Zapperi, J. Phys. D 42, 214012 (2009)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • Humberto A. Carmona
    • 1
  • Falk K. Wittel
    • 2
  • Ferenc Kun
    • 3
  1. 1.Departamento de Física, Universidade Federal do CearáFortalezaBrazil
  2. 2.Computational Physics, IfB, ETH ZürichZürichSwitzerland
  3. 3.Department of Theoretical PhysicsUniversity of DebrecenDebrecenHungary

Personalised recommendations