Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 11, pp 2323–2338 | Cite as

Saturation overshoot and hysteresis for twophase flow in porous media

  • R. Hilfer
  • R. Steinle
Review
Part of the following topical collections:
  1. Dynamic Systems: From Statistical Mechanics to Engineering Applications

Abstract

Saturation overshoot and hysteresis for two phase flow in porous media are briefly reviewed. Old and new challenges are discussed. It is widely accepted that the traditional Richards model for twophase flow in porous media does not support non-monotone travelling wave solutions for the saturation profile. As a concequence various extensions and generalizations have been recently discussed. The review highlights different limits within the traditional theory. It emphasizes the relevance of hysteresis in the Buckley–Leverett limit with jump-type hysteresis in the relative permeabilities. Reviewing the situation it emerges that the traditional theory may have been abandoned prematurely because of its inability to predict saturation overshoot in the Richards limit.

Keywords

Porous Medium Capillary Pressure Relative Permeability European Physical Journal Special Topic Travel Wave Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Hilfer, Adv. Chem. Phys. XCII, 299 (1996)Google Scholar
  2. 2.
    M. Muskat, The Flow of Homogeneous Fluids Through Porous Media (McGraw Hill, New York, 1937)Google Scholar
  3. 3.
    A.E. Scheidegger, The Physics of Flow Through Porous Media (University of Toronto Press, Canada, 1957)Google Scholar
  4. 4.
    R.E. Collins, Flow of Fluids Through Porous Materials (Reinhold Publishing Co., New York, 1961)Google Scholar
  5. 5.
    J. Bear, Dynamics of Fluids in Porous Media (Elsevier Publ. Co., New York, 1972)Google Scholar
  6. 6.
    G.D. Marsily, Quantitative Hydrogeology – Groundwater Hydrology for Engineers (Academic Press, San Diego, 1986)Google Scholar
  7. 7.
    G.P. Willhite, Waterflooding, series SPE Textbook Series, Vol. 3 (Society of Petroleum Engineers, USA, 1986)Google Scholar
  8. 8.
    L.W. Lake, Enhanced Oil Recovery (Prentice Hall, Englewood Cliffs, 1989)Google Scholar
  9. 9.
    F.A.L. Dullien, Porous Media – Fluid Transport and Pore Structure (Academic Press, San Diego, 1992)Google Scholar
  10. 10.
    M. Sahimi, Flow and Transport in Porous Media and Fractured Rock (VCH Verlagsgesellschaft mbH, Weinheim, 1995)Google Scholar
  11. 11.
    M. Eliassi, R.J. Water Resour. Res. 37, 2019 (2001)CrossRefADSGoogle Scholar
  12. 12.
    M.I.J. van Dijke, K. Sorbie, Phys. Rev. E 66, 046302 (2002)CrossRefADSGoogle Scholar
  13. 13.
    I. Fatt, AIME Petrol. Trans. 207, 144 (1956)Google Scholar
  14. 14.
    M.M. Dias, A.C. Payatakes, J. Fluid Mech. 164, 305 (1986)CrossRefzbMATHADSGoogle Scholar
  15. 15.
    M. Blunt, P. King, Phys. Rev. A 42, 4780 (1990)CrossRefADSGoogle Scholar
  16. 16.
    M. Blunt, M.J. King, H. Scher, Phys. Rev. A 46, 7680 (1992)CrossRefADSGoogle Scholar
  17. 17.
    M. Ferer, G.S. Bromhal, D.H. Smith, Phys. Rev. E 67, 051601 (2003)CrossRefADSGoogle Scholar
  18. 18.
    R. Hilfer, H. Besserer, “Old problems and new solutions for multiphase flow in porous media”, in Porous Media: Physics, Models, Simulation, edited by A. Dmitrievsky, M. Panfilov (World Scientific Publ. Co., Singapore, 2000), p. 133Google Scholar
  19. 19.
    E. Buckingham, “Studies on the movement of soil moisture,” Tech. Rep. (U.S. Department of Agriculture, Bureau of Soils, 1907)Google Scholar
  20. 20.
    L.A. Richards, Physics 1, 318 (1931)CrossRefzbMATHADSGoogle Scholar
  21. 21.
    R.D. Wyckoff, H. Botset, Physics 7, 325 (1936)CrossRefADSGoogle Scholar
  22. 22.
    M. Muskat, M. Meres, Physics, 7, 346 (1936)CrossRefzbMATHADSGoogle Scholar
  23. 23.
    M. Leverett, Trans. AIME 142, 152 (1941)CrossRefGoogle Scholar
  24. 24.
    R. Hilfer, Phys. Rev. E 73, 016307 (2006)CrossRefADSGoogle Scholar
  25. 25.
    R. Hilfer, R. Helmig, Adv. Water Res. 27, 1033 (2004)CrossRefGoogle Scholar
  26. 26.
    W.O. Smith, P.D. Foote, P.F. Busang, Physics 1, 18 (1931)CrossRefADSGoogle Scholar
  27. 27.
    S. Buckley, M. Leverett, Trans. AIME 146, 107 (1942)CrossRefGoogle Scholar
  28. 28.
    J. Challis, Phil. Mag. Ser. 3, 32, 494 (1848)Google Scholar
  29. 29.
    G. Stokes, Phil. Mag. Ser. 3, 33, 349 (1848)Google Scholar
  30. 30.
    P. Lax, Comm. Pure Appl. Math. 7, 159 (1954)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    P. LeFloch, Hyperbolic Systems of Conservation Laws (Birkhäuser, 2002)Google Scholar
  32. 32.
    H. Alt, S. Luckhaus, A. Visintin, Ann. Mat. Pura Appl. 136, 303–316 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    K. Aziz, A. Settari, Petroleum Reservoir Simulation (Applied Science Publishers Ltd., London, 1979)Google Scholar
  34. 34.
    R. Helmig, Multiphase Flow and Transport Processes in the Subsurface (Springer, Berlin, 1997)Google Scholar
  35. 35.
    Z. Chen, G. Huan, Y. Ma, Computational Methods for Multiphase Flow in Porous Media (SIAM, 2006)Google Scholar
  36. 36.
    B. Biswal, P.E. Øren, R.J. Held, S. Bakke, R. Hilfer, Image Anal. Stereol. 28, 23 (2009)MathSciNetCrossRefGoogle Scholar
  37. 37.
    L. Anton, R. Hilfer, Phys. Rev. E 59, 6819 (1999)CrossRefADSGoogle Scholar
  38. 38.
    R. Hilfer, H. Besserer, Physica B 279, 125 (2000)CrossRefADSGoogle Scholar
  39. 39.
    R. Hilfer, Physica A 359, 119 (2006)CrossRefADSGoogle Scholar
  40. 40.
    E. Gerolymatou, I. Vardoulakis, R. Hilfer, J. Phys. D 39, 4104 (2006)CrossRefGoogle Scholar
  41. 41.
    R. Hilfer, Physica A 371, 209 (2006)CrossRefADSGoogle Scholar
  42. 42.
    S. Manthey, M. Hassanizadeh, R. Helmig, R. Hilfer, Adv. Water Res. 31, 1137 (2008)CrossRefGoogle Scholar
  43. 43.
    R. Hilfer, Modeling and simulation of macrocapillarity, in CP1091, Modeling and Simulation of Materials, edited by P. Garrido, P. Hurtado, J. Marro (American Institute of Physics, New York, 2009), p. 141Google Scholar
  44. 44.
    R. Hilfer, F. Doster, Transp. Porous Med. 82, 507 (2010)MathSciNetCrossRefGoogle Scholar
  45. 45.
    F. Doster, P. Zegeling, R. Hilfer, Phys. Rev. E 81, 036307 (2010)CrossRefADSGoogle Scholar
  46. 46.
    F. Doster, R. Hilfer, New J. Phys. 13, 123030 (2011)CrossRefADSGoogle Scholar
  47. 47.
    F. Doster, O. Hönig, R. Hilfer, Phys. Rev. E 86, 016317 (2012)CrossRefADSGoogle Scholar
  48. 48.
    R. Hilfer, F. Doster, P. Zegeling, Vadose Zone J. 11, vzj2012.0021 (2012)Google Scholar
  49. 49.
    O. Hönig, F. Doster, R. Hilfer, Transp. Porous Med., 196 (2013)Google Scholar
  50. 50.
    F. Doster, R. Hilfer, Water Resour. Res. 50, 1 (2014)CrossRefGoogle Scholar
  51. 51.
    E.G. Youngs, Soil Sci. 86, 202–207 (1958)CrossRefGoogle Scholar
  52. 52.
    J. Briggs, D. Katz, “Drainage of water from sand in developing aquifer storage (1966), paper SPE1501 presented 1966 at the 41st Annual Fall Meeting of the SPE, Dallas, USAGoogle Scholar
  53. 53.
    R. Glass, T. Steenhuis ad, J. Parlange, Soil Sci. 148, 60 (1989)CrossRefGoogle Scholar
  54. 54.
    S. Shiozawa, H. Fujimaki, Water Resour. Res. 40, W07404 (2004)ADSGoogle Scholar
  55. 55.
    D. DiCarlo, Water Resour. Res. 40, W04215 (2004)ADSGoogle Scholar
  56. 56.
    J.L. Nieber, Geoderma 70, 207 (1996)CrossRefGoogle Scholar
  57. 57.
    F. Otto, J. Diff. Eq. 131, 20 (1996)MathSciNetCrossRefzbMATHADSGoogle Scholar
  58. 58.
    F. Otto, Adv. Math. Sci. Appl. 7, 537 (1997)MathSciNetzbMATHGoogle Scholar
  59. 59.
    S. Geiger, D. Durnford, Soil Sci. Soc. Am. J. 64, 460 (2000)CrossRefGoogle Scholar
  60. 60.
    M. Eliassi, R.J. Glass, Water Resour. Res. 38, 1234 (2002)ADSGoogle Scholar
  61. 61.
    A. Egorov, R. Dautov, J. Nieber, A. Sheshukov, Water Resour. Res. 39, 1266 (2003)ADSGoogle Scholar
  62. 62.
    D. DiCarlo, Adv. Water Res. 28, 1021 (2005)CrossRefGoogle Scholar
  63. 63.
    C. van Duijn, L. Peletier, I. Pop, SIAM J. Math. Anal. 39, 507 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    L. Cueto-Felgueroso, R. Juanes, Phys. Rev. Lett. 101, 244504 (2008)CrossRefADSGoogle Scholar
  65. 65.
    L. Cueto-Felgueroso, R. Juanes, Phys. Rev. E 79, 036301 (2009)MathSciNetCrossRefADSGoogle Scholar
  66. 66.
    D. diCarlo, Water Resour. Res. 49, 4531 (2013)CrossRefADSGoogle Scholar
  67. 67.
    H. Alt, S. Luckhaus, Math. Z. 183, 311 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  68. 68.
    T. Fürst, R. Vodak, M. Sir, M. Bil, Water Resour. Res. 45, W03408 (2009)ADSGoogle Scholar
  69. 69.
    D. DiCarlo, M. Mirzaei, B. Aminzadeh, H. Dehghanpur, Transp. Porous Med. 91, 955 (2012)CrossRefGoogle Scholar
  70. 70.
    Y. Xiong, J. Hydrology 510, 353 (2014)CrossRefADSGoogle Scholar
  71. 71.
    J. Nieber, R. Dautov, E. Egorov, A. Sheshukov, Transp. Porous Med. 58, 147 (2005)MathSciNetCrossRefGoogle Scholar
  72. 72.
    C. van Duijn, Y. Fan, L. Peletier, I. Pop, Nonlinear Anal. Real World Appl. 14, 1361 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  73. 73.
    T. Bauters, D. DiCarlo, T. Steenhuis, Y. Parlange, J. Hydrology 231-232, 244 (2000)CrossRefADSGoogle Scholar
  74. 74.
    M. Deinert, J. Parlange, K. Cady, T. Steenhuis, J. Selker, Water Resour. Res. 39, 1263 (2003)ADSGoogle Scholar
  75. 75.
    S. Bottero, M. Hassanizadeh, P. Kleingeld, T. Heimorvaara, Water Resour. Res. 47, W10505 (2011)ADSGoogle Scholar
  76. 76.
    R. Hilfer, P.E. Øren, Transp. Porous Med. 22, 53 (1996)CrossRefGoogle Scholar
  77. 77.
    Y. Mualem, Water Resour. Res. 10, 514 (1974)CrossRefADSGoogle Scholar
  78. 78.
    J.C. Parker, R.J. Lenhard, Water Resour. Res. 23, 2187 (1987)CrossRefADSGoogle Scholar
  79. 79.
    R. Lenhard, J. Parker, Water Resour. Res. 23, 2197 (1987)CrossRefADSGoogle Scholar
  80. 80.
    M.T.v. Genuchten, Soil Sci. Soc. Am. J. 44, 892 (1980)CrossRefGoogle Scholar
  81. 81.
    L. Luckner, M.T.v. Genuchten, D. Nielsen, Water Resour. Res. 25, 2187 (1989)CrossRefADSGoogle Scholar
  82. 82.

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • R. Hilfer
    • 1
  • R. Steinle
    • 1
  1. 1.Institute for Computational Physics, Universität StuttgartStuttgartGermany

Personalised recommendations