The European Physical Journal Special Topics

, Volume 223, Issue 11, pp 2297–2306 | Cite as

Relaxation dynamics near the sol–gel transition: From cluster approach to mode-coupling theory

  • A. Coniglio
  • J.J. Arenzon
  • A. Fierro
  • M. Sellitto
Part of the following topical collections:
  1. Dynamic Systems: From Statistical Mechanics to Engineering Applications


A long standing problem in glassy dynamics is the geometrical interpretation of clusters and the role they play in the observed scaling laws. In this context, the mode-coupling theory (MCT) of type-A transition and the sol–gel transition are both characterized by a structural arrest to a disordered state in which the long-time limit of the correlator continuously approaches zero at the transition point. In this paper, we describe a cluster approach to the sol-gel transition and explore its predictions, including universal scaling laws and a new stretched relaxation regime close to criticality. We show that while MCT consistently describes gelation at mean-field level, the percolation approach elucidates the geometrical character underlying MCT scaling laws.


European Physical Journal Special Topic Cluster Approach Bethe Lattice Static Structure Factor Memory Kernel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.A. Angell, K.L. Ngai, G.B. McKenna, P.F. McMillan, S.W. Martin, J. Appl. Phys. 88, 3113 (2000)CrossRefADSGoogle Scholar
  2. 2.
    P.G. Debenedetti, F.H. Stillinger, Nature 410, 259 (2001)CrossRefADSGoogle Scholar
  3. 3.
    P.J. Flory, The Physics of Polymer Chemistry (Cornell University Press, 1954)Google Scholar
  4. 4.
    P.G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, 1993)Google Scholar
  5. 5.
    D. Stauffer, A. Coniglio, M. Adam, Adv. Polym. Sci. 44, 103 (1982)CrossRefGoogle Scholar
  6. 6.
    E. Zaccarelli, J. Phys.: Condens. Matter 19, 323101 (2007)Google Scholar
  7. 7.
    H.J. Herrmann, D. P. Landau, D. Stauffer, Phys. Rev. Lett. 49, 412 (1982)CrossRefADSGoogle Scholar
  8. 8.
    D. Stauffer, A. Aharony, Introduction to Percolation Theory (Taylor & Francis, 1992)Google Scholar
  9. 9.
    J.E. Martin, J. Wilcoxon, D. Adolf, Phys. Rev. A 36, 1803 (1987)CrossRefADSGoogle Scholar
  10. 10.
    J.E. Martin, J.P. Wilcoxon, Phys. Rev. Lett. 61, 373 (1988)CrossRefADSGoogle Scholar
  11. 11.
    J.E. Martin, J.P. Wilcoxon, J. Odinek, Phys. Rev. A 43, 858 (1991)CrossRefADSGoogle Scholar
  12. 12.
    J.C. Phillips, Rep. Prog. Phys. 59, 1133 (1996)CrossRefADSGoogle Scholar
  13. 13.
    P.J. Flory, J. Am. Chem. Soc. 63, 3083 (1941)CrossRefGoogle Scholar
  14. 14.
    W.H. Stockmayer, J. Chem. Phys. 11, 45 (1943)CrossRefADSGoogle Scholar
  15. 15.
    M. Rubinstein, A.V. Dobrynin, Curr. Opin. Coll. Int. Sci. 4, 83 (1999)CrossRefGoogle Scholar
  16. 16.
    M. Daoud, A. Coniglio, J. Phys. A 14, L301 (1981)CrossRefADSGoogle Scholar
  17. 17.
    A. Fierro, T. Abete, A. de Candia, E. Del Gado, A. Coniglio, J. Phys.: Condens. Matter 21, 504110 (2009)Google Scholar
  18. 18.
    J.J. Arenzon, A. Coniglio, A. Fierro, M. Sellitto, Phys. Rev. E 90, 020301(R) (2014)CrossRefADSGoogle Scholar
  19. 19.
    A. Fierro, T. Abete, A. Coniglio, J. Chem. Phys. 131, 194906 (2009)CrossRefADSGoogle Scholar
  20. 20.
    In the standard random percolation, cluster is defined as a set of bonded particles, and, following the percolation approach to the sol-gel transition, in the gel phase, the spanning cluster of bonded particles makes the system able to bear stress. In the analysis of the gel dynamics, the relevant clusters are instead given by bonded particles, plus particles that are trapped inside the bonded ones. With such a definition, the long time limit of the correlator, i.e. the non-ergodicity parameter, gives the density of localized particles [21-23]. Clearly, the main contribution comes from bonded particles, however, a small contribution may be also due to particles trapped inside them. We expect that the percolation exponents, at least in high dimension, are the same as in standard random percolation. On the Bethe lattice, corresponding to infinite dimension, there is no trapped particle, and the two definitions coincideGoogle Scholar
  21. 21.
    W. Peng, H.E. Castillo, P.M. Goldbart, A. Zippelius, Phys. Rev. B 57, 839 (1998)CrossRefADSGoogle Scholar
  22. 22.
    P.M. Goldbart, Proc. Conf. on Rigidity Theory and Applications (Kluwer/Plenum, New York, 1998), p. 95Google Scholar
  23. 23.
    P.M. Goldbart, J. Phys.: Condens. Matter 12, 6585 (2000)ADSGoogle Scholar
  24. 24.
    M. Doi, S.F. Edwards, The Theory of Polymer Dynamics (Clarendon Press, 1986)Google Scholar
  25. 25.
    E.D. Gado, A. Fierro, L. de Arcangelis, A. Coniglio, Phys. Rev. E 69, 051103 (2004)CrossRefADSGoogle Scholar
  26. 26.
    E. Del Gado, L. de Arcangelis, A. Coniglio, Eur. Phys. J. 2, 359 (2000)Google Scholar
  27. 27.
    K. Broderix, P.M. Goldbart, A. Zippelius, Phys. Rev. Lett. 79, 368 (1997)CrossRefADSGoogle Scholar
  28. 28.
    M. Küntzel, H. Löwe, P. Müller, A. Zippelius, Eur. Phys. J. E 12, 325 (2003)CrossRefGoogle Scholar
  29. 29.
    H. Löwe, P. Müller, A. Zippelius, J. Phys.: Condens. Matter 17, S1659 (2005)Google Scholar
  30. 30.
    H.R. Warner, Ind. Eng. Chem. Fundam. 11, 379 (1972)MathSciNetCrossRefGoogle Scholar
  31. 31.
    K. Kremer, G.S. Grest, J. Chem. Phys. 92, 5057 (1990) and 94, 4103 (1991) (Erratum)CrossRefADSGoogle Scholar
  32. 32.
    G.S. Grest, K. Kremer, Macromolecules 20, 1376 (1987)CrossRefADSGoogle Scholar
  33. 33.
    G.S. Grest, K. Kremer, Phys. Rev. A 33, 3628 (1986)CrossRefADSGoogle Scholar
  34. 34.
    M. Murat, G.S. Grest, Phys. Rev. Lett. 63, 1074 (1989)CrossRefADSGoogle Scholar
  35. 35.
    T. Abete, A. de Candia, E.D. Gado, A. Fierro, A. Coniglio, Phys. Rev. Lett. 98, 088301 (1007)Google Scholar
  36. 36.
    T. Abete, A. de Candia, E.D. Gado, A. Fierro, A. Coniglio, Phys. Rev. E 78, 041404 (2008)CrossRefADSGoogle Scholar
  37. 37.
    M.E. Fisher, J.W. Essam, J. Math. Phys. 2, 609 (1961)MathSciNetCrossRefzbMATHADSGoogle Scholar
  38. 38.
    W. Götze, Complex Dynamics of Glass-forming Liquids (Oxford University Press, Oxford, 2009)Google Scholar
  39. 39.
    N. Khalil, A. Coniglio, A. de Candia, A. Fierro, M. Pica Ciamarra [arXiv:1401.7252] (2014), Soft Matter (appear)

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • A. Coniglio
    • 1
  • J.J. Arenzon
    • 2
  • A. Fierro
    • 1
  • M. Sellitto
    • 3
  1. 1.CNR-SPIN, Dipartimento di Scienze Fisiche, Università di Napoli “Federico II”NapoliItaly
  2. 2.Instituto de Física, Universidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di NapoliAversa (CE)Italy

Personalised recommendations