Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 11, pp 2285–2295 | Cite as

A soft matter in construction – Statistical physics approach to formation and mechanics of C–S–H gels in cement

  • E. Del Gado
  • K. Ioannidou
  • E. Masoero
  • A. Baronnet
  • R.J.-M. Pellenq
  • F.-J. Ulm
  • S. Yip
Review
Part of the following topical collections:
  1. Dynamic Systems: From Statistical Mechanics to Engineering Applications

Abstract

Calcium-silicate hydrate (C–S–H) is the main binding agent in cement and concrete. It forms at the beginning of cement hydration, it progressively densifies as cement hardens and is ultimately responsible of concrete performances. This hydration product is a cohesive nano-scale gel, whose structure and mechanics are still poorly understood, in spite of its practical importance. Here we review some of the open questions for this fascinating material and a statistical physics approach recently developed, which allows us to investigate the gel formation under the out-of-equilibrium conditions typical of cement hydration and the role of the nano-scale structure in C–S–H mechanics upon hardening. Our approach unveils how some distinctive features of the kinetics of cement hydration can be related to changes in the morphology of the gels and elucidates the role of nano-scale mechanical heterogeneities in the hardened C–S–H.

Keywords

European Physical Journal Special Topic Cement Hydration Pore Solution Hydration Process Packing Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.J.M. Pellenq, H. Van Damme, MRS Bull. 29, 319 (2004)CrossRefGoogle Scholar
  2. 2.
    R.J. Flatt, N. Roussel, C.R. Cheeseman, J. Eur. Ceram. Soc. 32, 2787 (2012)CrossRefGoogle Scholar
  3. 3.
    K. Van Vliet, R. Pellenq, M.J. Buehler, J.C. Grossman, H. Jennings, F.J. Ulm, S. Yip, MRS Bull. 37, 395 (2012)CrossRefGoogle Scholar
  4. 4.
    A. Nonat, Cem. Concr. Res. 34, 1521 (2004)CrossRefGoogle Scholar
  5. 5.
    A.J. Allen, J.J. Thomas, H.M. Jennings, Nature Mater. 6, 311 (2007)CrossRefADSGoogle Scholar
  6. 6.
    I. Richardson, Cem. Concr. Res. 38, 137 (2008)CrossRefGoogle Scholar
  7. 7.
    J.J. Thomas, H.M. Jennings, Cem. Concr. Res. 36, 30 (2006)CrossRefGoogle Scholar
  8. 8.
    W.S. Chiang, E. Fratini, P. Baglioni, D. Liu, S.H. Chen, J. Phys. Chem. C 116, 5055 (2012)CrossRefGoogle Scholar
  9. 9.
    F. Ridi, E. Fratini, P. Baglioni, J. Colloid Interface Sci. 357, 255 (2011)CrossRefGoogle Scholar
  10. 10.
    S. Garrault, E. Finot, E. Lesniewska, A. Nonat, Mater. Struct. 38, 435 (2005)CrossRefGoogle Scholar
  11. 11.
    J.W. Bullard, H.M. Jennings, R.A. Livingston, A. Nonat, G.W. Scherer, J.S. Schweitzer, K.L. Scrivener, J.J. Thomas, Cem. Concr. Res. 41, 1208 (2011)CrossRefGoogle Scholar
  12. 12.
    L.B. Skinner, S.R. Chae, C.J. Benmore, H.R. Wenk, P.J.M. Monteiro, Phys. Rev. Lett. 104, 195502 (2010)CrossRefADSGoogle Scholar
  13. 13.
    D. Bentz, Cement and Concrete Research 38, 196 (2008), Special Issue The 12th International Congress on the Chemistry of Cement, Montreal, Canada, July 8–13, 2007Google Scholar
  14. 14.
    D. Lootens, P. Hébraud, E. Lécolier, H. Van Damme, Oil Gas Sci. Technol. 59, 31 (2004)CrossRefGoogle Scholar
  15. 15.
    L. Nachbaur, J. Mutin, A. Nonat, L. Choplin, Cem. Concr. Res. 31, 183 (2001)CrossRefGoogle Scholar
  16. 16.
    G. Constantinides, F.J. Ulm, J. Mech. Phys. Solids 55, 64 (2007)CrossRefzbMATHADSGoogle Scholar
  17. 17.
    M. Vandamme, F.J. Ulm, Proc. Nat. Acad. Sci. 106, 10552 (2009)CrossRefADSGoogle Scholar
  18. 18.
    R.J.M. Pellenq, A. Kushima, R. Shahsavari, K.J. Van Vliet, M.J. Buehler, S. Yip, F.J. Ulm, Proc. Natl. Acad. Sci. USA 106, 16102 (2009)CrossRefADSGoogle Scholar
  19. 19.
    S. Bishnoi, K.L. Scrivener, Cem. Concr. Res. 39, 266 (2009)CrossRefGoogle Scholar
  20. 20.
    J.W. Bullard, E. Enjolras, W.L. George, S.G. Satterfield, J.E. Terrill, Mod. Sim. Mater. Sci. Eng. 18, 025007 (2010)CrossRefADSGoogle Scholar
  21. 21.
    F. Tzschichholz, H.J. Herrmann, H. Zanni, Phys. Rev. E 53, 2629 (1996)CrossRefADSGoogle Scholar
  22. 22.
    H.M. Jennings, Cem. Concr. Res. 30, 101 (2000)CrossRefGoogle Scholar
  23. 23.
    H.M. Jennings, Cem. Concr. Res. 38, 275 (2008)CrossRefGoogle Scholar
  24. 24.
    S. Brisard, R.S. Chae, I. Bihannic, L. Michot, P. Guttmann, J. Thieme, G. Schneider, P.J. Monteiro, P. Levitz, Am. Mineral. 97, 480 (2012)CrossRefGoogle Scholar
  25. 25.
    I. Richardson, Cem. Concr. Res. 34, 1733 (2004)CrossRefGoogle Scholar
  26. 26.
    E.M. Gartner, Cem. Concr. Res. 27, 665 (1997)CrossRefGoogle Scholar
  27. 27.
    E.M. Gartner, K.E. Kurtis, P.J.M. Monteiro, Cem. Concr. Res. 30, 817 (2000)CrossRefGoogle Scholar
  28. 28.
    A.C.A. Muller, K.L. Scrivener, A.M. Gajewicz, P.J. McDonald, J. Phys. Chem. C 117, 403 (2013)CrossRefGoogle Scholar
  29. 29.
    E. Gallucci, P. Mathur, K. Scrivener, Cem. Concr. Res. 40, 4 (2010)CrossRefGoogle Scholar
  30. 30.
    S. Bishnoi, Cem. Concr. Res. 46, 30 (2013)CrossRefGoogle Scholar
  31. 31.
    K. Ioannidou, R.J.M. Pellenq, E. Del Gado, Soft Matter 10, 1121 (2014)CrossRefADSGoogle Scholar
  32. 32.
    S. Garrault, T. Behr, A. Nonat, J. Phys. Chem. B 110, 270 (2006), ISSN 1520-6106CrossRefGoogle Scholar
  33. 33.
    E. Masoero, J.J. Thomas, H.M. Jennings, J. Am. Ceram. Soc. (2013) (in press)Google Scholar
  34. 34.
    R.J.M. Pellenq, J.M. Caillol, A. Delville, J. Phys. Chem. B 101, 8584 (1997)CrossRefGoogle Scholar
  35. 35.
    B. Jönsson, A. Nonat, C. Labbez, B. Cabane, H. Wennerström, Langmuir 21, 9211 (2005)CrossRefGoogle Scholar
  36. 36.
    R.M. Pellenq, N. Lequeux, H. van Damme, Cem. Concr. Res. 38, 159 (2008)CrossRefGoogle Scholar
  37. 37.
    Y.S. Jho, R. Brewster, S.A. Safran, P.A. Pincus, Langmuir 27, 4439 (2011)CrossRefGoogle Scholar
  38. 38.
    C. Plassard, E. Lesniewska, I. Pochard, A. Nonat, Langmuir 21, 7263 (2005)CrossRefGoogle Scholar
  39. 39.
    S. Lesko, E. Lesniewska, A. Nonat, J.C. Mutin, J.P. Goudonnet, Ultramicroscopy 86, 11 (2001)CrossRefGoogle Scholar
  40. 40.
    M.J. Booth, A.C. Eaton, A.D.J. Haymet, J. Chem. Phys. 103, 417 (1995)CrossRefADSGoogle Scholar
  41. 41.
    P. Attard, Electrolytes and the Electric Double Layer (John Wiley & Sons, Inc., 2007), p. 1Google Scholar
  42. 42.
    A. de Candia, E. Del Gado, A. Fierro, N. Sator, M. Tarzia, A. Coniglio, Phys. Rev. E 74, 010403 (2006)CrossRefADSGoogle Scholar
  43. 43.
    P. Charbonneau, D.R. Reichman, Phys. Rev. E 75, 011507 (2007)CrossRefADSGoogle Scholar
  44. 44.
    L. Nicoleau, T. Gadt, L. Chitu, G. Maier, O. Paris, Soft Matter 9, 4864 (2013)CrossRefADSGoogle Scholar
  45. 45.
    E. Masoero, E. Del Gado, R.J.M. Pellenq, F.J. Ulm, S. Yip, Phys. Rev. Lett. 109, 155503 (2012)CrossRefADSGoogle Scholar
  46. 46.
    E. Masoero, E. Del Gado, R.J.M. Pellenq, S. Yip, F.J. Ulm, Soft Matter. 10, 491 (2014)CrossRefADSGoogle Scholar
  47. 47.
    H. Taylor, Adv. Cem. Based Mater. 1, 38 (1993)CrossRefGoogle Scholar
  48. 48.
    X. Cong, R.J. Kirkpatrick, Adv. Cem. Based Mater. 3, 144 (1996)CrossRefGoogle Scholar
  49. 49.
    I. Richardson, Cem. Concr. Res. 29, 1131 (1999)CrossRefADSGoogle Scholar
  50. 50.
    J.F. Lutsko, J. Appl. Phys. 65, (1989)Google Scholar
  51. 51.
    J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, 1985)Google Scholar
  52. 52.
    G.W. Scherer, J. Zhang, J.A. Quintanilla, S. Torquato, Cem. Concr. Res. 42, 665 (2012)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • E. Del Gado
    • 1
    • 2
  • K. Ioannidou
    • 3
    • 7
  • E. Masoero
    • 4
  • A. Baronnet
    • 5
  • R.J.-M. Pellenq
    • 3
    • 5
    • 7
  • F.-J. Ulm
    • 3
    • 7
  • S. Yip
    • 6
  1. 1.Department of Physics and Institute for Soft Matter Synthesis & MetrologyGeorgetown UniversityWashington DCUSA
  2. 2.Department of CivilEnvironmental and Geomatic Engineering, ETH ZurichZurichSwitzerland
  3. 3.Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  4. 4.School of Civil Engineering and Geosciences, Newcastle UniversityNewcastleUK
  5. 5.CINaM, CNRS and Aix-Marseille UniversityMarseilleFrance
  6. 6.Department of Nuclear Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  7. 7.MIT-CNRS Joint Laboratory, Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations