Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 11, pp 2253–2267 | Cite as

Recent advances in the simulation of particle-laden flows

  • J. Harting
  • S. Frijters
  • M. Ramaioli
  • M. Robinson
  • D.E. Wolf
  • S. Luding
Review
Part of the following topical collections:
  1. Dynamic Systems: From Statistical Mechanics to Engineering Applications

Abstract

A substantial number of algorithms exists for the simulation of moving particles suspended in fluids. However, finding the best method to address a particular physical problem is often highly non-trivial and depends on the properties of the particles and the involved fluid(s) together. In this report, we provide a short overview on a number of existing simulation methods and provide two state of the art examples in more detail. In both cases, the particles are described using a Discrete Element Method (DEM). The DEM solver is usually coupled to a fluid-solver, which can be classified as grid-based or mesh-free (one example for each is given). Fluid solvers feature different resolutions relative to the particle size and separation. First, a multicomponent lattice Boltzmann algorithm (mesh-based and with rather fine resolution) is presented to study the behavior of particle stabilized fluid interfaces and second, a Smoothed Particle Hydrodynamics implementation (mesh-free, meso-scale resolution, similar to the particle size) is introduced to highlight a new player in the field, which is expected to be particularly suited for flows including free surfaces.

Keywords

European Physical Journal Special Topic Smooth Particle Hydrodynamic Discrete Element Method Capillary Number Lattice Boltzmann Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.M. Dupin, I. Halliday, C.M. Care, L. Alboul, L.L. Munn, Phys. Rev. E 75, 066707 (2007)CrossRefADSGoogle Scholar
  2. 2.
    C. Aidun, J. Clausen, Annu. Rev. Fluid Mech. 42, 439 (2010)MathSciNetCrossRefADSGoogle Scholar
  3. 3.
    T. Krüger, F. Varnik, D. Raabe, Comput. Math. Appl. 61, 3485 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    F. Janoschek, F. Toschi, J. Harting, Phys. Rev. E 82, 056710 (2010)CrossRefADSGoogle Scholar
  5. 5.
    H.L. Goldsmith, R. Skalak, Annu. Rev. Fluid Mech. 7, 213 (1975)CrossRefADSGoogle Scholar
  6. 6.
    A. Leonardi, F. Wittel, M. Mendoza, H. Herrmann, Multiphase debris flow simulations with the discrete element method coupled with a lattice-Boltzmann fluid. In Proceedings of III International Conference on Particle-based Methods, PARTICLES 2013 (2013)Google Scholar
  7. 7.
    G. Sauermann, A. Poliakov, P. Rognon, H. Herrmann, Geomorphology 36, 47 (2000)CrossRefADSGoogle Scholar
  8. 8.
    A. Araújo, E. Partelli, T. Pöschel, J. AndradeJr., H. Herrmann, Sci. Rep. 3, 2858 (2013)ADSGoogle Scholar
  9. 9.
    A. Lorke, M. Winterer, R. Schmechel, C. Schulz, Nanoparticles from the Gas Phase – Formation, Structure, Properties (Springer, Berlin, 2012)Google Scholar
  10. 10.
    M.R. Robinson, S. Luding, M. Ramioli, Grain sedimentation with SPH-DEM and its validation. In Powders and Grains 2013 – AIP Conf. Proc., Vol. 1542 (2013), p. 1079Google Scholar
  11. 11.
    Y. Tsuji, T. Oshima, Y. Morikawa, KONA 3, 38 (1985)CrossRefGoogle Scholar
  12. 12.
    T. Tanaka, T. Kawaguchi, Y. Tsuji, Int. J. Modern Phys. B 7, 1889 (1993)CrossRefADSGoogle Scholar
  13. 13.
    W. Kalthoff, S. Schwarzer, G. Ristow, H. Herrmann, Int. J. Mod. Phys. C 7, 543 (1996)CrossRefADSGoogle Scholar
  14. 14.
    K. Chu, A. Yu, Powder Technol. 179, 104 (2008)CrossRefGoogle Scholar
  15. 15.
    J. Link, L. Cuypers, N. Deen, J. Kuipers, Chem. Eng. Sci. 60, 3425 (2005)CrossRefGoogle Scholar
  16. 16.
    N. Deen, M.V.S. Annaland, M.V.D. Hoef, J. Kuipers, Chem. Eng. Sci. 62, 28 (2007)CrossRefGoogle Scholar
  17. 17.
    M.V.D. Hoef, M.V.S. Annaland, N. Deen, J. Kuipers, Annu. Rev. Fluid Mech. 40, 47 (2008)CrossRefADSGoogle Scholar
  18. 18.
    M.R. Robinson, M. Ramioli, S. Luding, Int. J. Multiphase Flow 59, 121 (2013)CrossRefGoogle Scholar
  19. 19.
    S. Srivastava, K. Yazdchi, S. Luding, Phil. Trans. R. Soc. A 372, 20130386 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    A. Leonardi, F. Wittel, M. Mendoza, H. Herrmann, Comput. Part. Mech. 1, 3 (2014)CrossRefGoogle Scholar
  21. 21.
    W. Ge, L. Lu, J. Xu, Y. Yue, X. Liu, L. Li, EMMS-based discrete particle method (EMMS-DPM) for simulation of gas-solid flows (2014) under reviewGoogle Scholar
  22. 22.
    N. Guo, J. Zhao, Int. J. Numer. Meth. Engng. (2014) (in press) – DOI:  10.1002/nme.4702
  23. 23.
    M. Hütter, J. Colloid Int. Sci. 231, 337 (2000)CrossRefGoogle Scholar
  24. 24.
    D. Petera, M. Muthukumar, J. Chem. Phys. 111, 7614 (1999)CrossRefADSGoogle Scholar
  25. 25.
    P. Ahlrichs, R. Everaers, B. Dünweg, Phys. Rev. E 64, 040501 (2001)CrossRefADSGoogle Scholar
  26. 26.
    L.E. Silbert, J.R. Melrose, R.C. Ball, Phys. Rev. E 56, 7067 (1997)CrossRefADSGoogle Scholar
  27. 27.
    G. Bossis, J.F. Brady, J. Chem. Phys. 80, 5141 (1984)CrossRefADSGoogle Scholar
  28. 28.
    A. Sierou, J.F. Brady, J. Fluid Mech. 448, 115 (2001)CrossRefzbMATHADSGoogle Scholar
  29. 29.
    T. Phung, J. Brady, G. Bossis, J. Fluid Mech. 313, 181 (1996)CrossRefADSGoogle Scholar
  30. 30.
    J.F. Brady, G. Bossis, Annu. Rev. Fluid Mech. 20, 111 (1988)CrossRefADSGoogle Scholar
  31. 31.
    M. Loewenberg, E. Hinch, J. Fluid. Mech. 321, 395 (1996)CrossRefzbMATHADSGoogle Scholar
  32. 32.
    H.A. Knudsen, J.H. Werth, D.E. Wolf, Eur. Phys. J. E 27, 161 (2008)CrossRefGoogle Scholar
  33. 33.
    P. Español, P. Warren, Europhys. Lett. 30, 191 (1995)CrossRefADSGoogle Scholar
  34. 34.
    A. Ladd, R. Verberg, J. Stat. Phys. 104, 1191 (2001)MathSciNetCrossRefzbMATHADSGoogle Scholar
  35. 35.
    A. Komnik, J. Harting, H. Herrmann, J. Stat. Mech: Theor. Exp., P12003 (2004)Google Scholar
  36. 36.
    G. Gompper, T. Ihle, D. Kroll, R. Winkler, Multi-Particle Collision dynamics: A Particle-Based Mesoscale Simulation Approach to the Hydrodynamics of Complex Fluids (Springer, 2009), p. 1Google Scholar
  37. 37.
    A. Malevanets, R. Kapral, J. Chem. Phys. 110, 8605 (1999)CrossRefADSGoogle Scholar
  38. 38.
    A. Malevanets, R. Kapral, J. Chem. Phys. 112, 7260 (2000)CrossRefADSGoogle Scholar
  39. 39.
    M. Hecht, J. Harting, T. Ihle, H. Herrmann, Phys. Rev. E 72, 011408 (2005)CrossRefADSGoogle Scholar
  40. 40.
    M. Hecht, J. Harting, M. Bier, J. Reinshagen, H. Herrmann, Phys. Rev. E 74, 021403 (2006)CrossRefADSGoogle Scholar
  41. 41.
    M.R. Robinson, S. Luding, M. Ramioli, SPH-DEM simulations of grain dispersion by liquid injection. In Powders and Grains 2013 – AIP Conf. Proc., Vol. 1542 (2013), p. 1122Google Scholar
  42. 42.
    A. Fogelson, C. Peskin, J. Comput. Phys. 79, 50 (1988)MathSciNetCrossRefzbMATHADSGoogle Scholar
  43. 43.
    S. Schwarzer, K. Höfler, B. Wachmann, Comp. Phys. Comm. 268, 121 (1999)Google Scholar
  44. 44.
    K. Höfler, S. Schwarzer, Phys. Rev. E 61, 7146 (2000)CrossRefADSGoogle Scholar
  45. 45.
    F. Fonseca, H. Herrmann, Physica A 342, 447 (2004)CrossRefADSGoogle Scholar
  46. 46.
    F. Fonseca, H. Herrmann, Physica A 345, 341 (2005)CrossRefADSGoogle Scholar
  47. 47.
    S. McNamara, E. Flekkøy, K. Måløy, Phys. Rev. E 61, 658 (2000)CrossRefGoogle Scholar
  48. 48.
    M. Strauß, H. Herrmann, S. McNamara, G. Niederreiter, K. Sommer, Particle Technol. 162, 16 (2006)Google Scholar
  49. 49.
    M. Strauß, S. McNamara, H. Herrmann, Granular Matter 9, 35 (2007)CrossRefzbMATHGoogle Scholar
  50. 50.
    W. Ramsden, Proc. R. Soc. London 72, 156 (1903)CrossRefGoogle Scholar
  51. 51.
    S. Pickering, J. Chem. Soc., Trans. 91, 2001 (1907)CrossRefGoogle Scholar
  52. 52.
    S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond (Oxford University Press, Oxford, 2001)Google Scholar
  53. 53.
    X. Shan, H. Chen, Phys. Rev. E 47, 1815 (1993)CrossRefADSGoogle Scholar
  54. 54.
    X. Shan, H. Chen, Phys. Rev. E 49, 2941 (1994)CrossRefADSGoogle Scholar
  55. 55.
    M.R. Swift, E. Orlandini, W.R. Osborn, J.M. Yeomans, Phys. Rev. E 54, 5041 (1996)CrossRefADSGoogle Scholar
  56. 56.
    S. Lishchuk, C. Care, I. Halliday, Phys. Rev. E 67, 036701 (2003)CrossRefADSGoogle Scholar
  57. 57.
    J. Harting, H. Herrmann, E. Ben-Naim, Europhys. Lett. 83, 30001 (2008)CrossRefADSGoogle Scholar
  58. 58.
    K. Stratford, R. Adhikari, I. Pagonabarraga, J.-C. Desplat, M. Cates, Science 309, 2198 (2005)CrossRefADSGoogle Scholar
  59. 59.
    A. Joshi, Y. Sun, Phys. Rev. E 79, 066703 (2009)CrossRefADSGoogle Scholar
  60. 60.
    F. Jansen, J. Harting, Phys. Rev. E 83, 046707 (2011)CrossRefADSGoogle Scholar
  61. 61.
    S. Frijters, F. Günther, J. Harting, Soft Matter 8, 6542 (2012)CrossRefGoogle Scholar
  62. 62.
    F. Günther, F. Janoschek, S. Frijters, J. Harting, Comput. Fluids 80, 184 (2013)CrossRefGoogle Scholar
  63. 63.
    B. Binks, T. Horozov, Colloidal Particles at Liquid Interfaces (Cambridge University Press, 2006)Google Scholar
  64. 64.
    B. Binks, Cur. Opin. Colloid Interface Sci. 7, 21 (2002)CrossRefGoogle Scholar
  65. 65.
    E. Kim, K. Stratford, R. Adhikari, M. Cates, Langmuir 24, 6549 (2008)CrossRefGoogle Scholar
  66. 66.
    A. Joshi, Y. Sun, Phys. Rev. E 82, 041401 (2010)CrossRefADSGoogle Scholar
  67. 67.
    N.-Q. Nguyen, A. Ladd, Phys. Rev. E 66, 046708 (2002)CrossRefADSGoogle Scholar
  68. 68.
    F. Janoschek, J. Harting, F. Toschi (submitted) (2014)Google Scholar
  69. 69.
    G. Taylor, Proc. R. Soc. Lond. Ser. A 138, 41 (1932)CrossRefADSGoogle Scholar
  70. 70.
    G. Taylor, Proc. R. Soc. Lond. Ser. A 146, 501 (1934)CrossRefADSGoogle Scholar
  71. 71.
    B. Kaoui, J. Harting, C. Misbah, Phys. Rev. E 83, 066319 (2011)CrossRefADSGoogle Scholar
  72. 72.
    T. Anderson, R. Jackson, Ind. Eng. Chem. Fundam. 6, 527 (1967)CrossRefGoogle Scholar
  73. 73.
    J.J. Monaghan, Rep. Prog. Phys. 68, 1703 (2005)MathSciNetCrossRefADSGoogle Scholar
  74. 74.
    M. Robinson, J. Monaghan, Int. J. Num. Meth. Fluids 70, 37 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  75. 75.
    D. Price, J. Comp. Phys. 231, 759 (2012)CrossRefzbMATHADSGoogle Scholar
  76. 76.
    R. Di Felice, Int. J. Multiph. Flow 20, 153 (1994)CrossRefzbMATHGoogle Scholar
  77. 77.
    J.J. Monaghan, J. Comp. Phys. 110, 399 (1994)CrossRefzbMATHADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • J. Harting
    • 1
    • 2
  • S. Frijters
    • 1
  • M. Ramaioli
    • 3
  • M. Robinson
    • 4
  • D.E. Wolf
    • 5
  • S. Luding
    • 6
  1. 1.Department of Applied PhysicsEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Faculty of Science and Technology, Mesa+ Institute, University of TwenteEnschedeThe Netherlands
  3. 3.Environmental Hydraulics Laboratory, École Polytechnique Fédérale de LausanneLausanneSwitzerland
  4. 4.Mathematical Institute, University of OxfordOxfordUK
  5. 5.Department of PhysicsUniversity of Duisburg-EssenDuisburgGermany
  6. 6.MSM, MESA+, CTW, Department of Engineering Technology, University of TwenteEnschedeThe Netherlands

Personalised recommendations