The European Physical Journal Special Topics

, Volume 223, Issue 11, pp 2119–2130 | Cite as

Temporal organization of ongoing brain activity

  • F. Lombardi
  • L. de Arcangelis
Part of the following topical collections:
  1. Dynamic Systems: From Statistical Mechanics to Engineering Applications


Ongoing brain activity results from the mutual interaction of hundred billions non-linear units and represents a significant part of the overall brain activity. Although its complex dynamics has been widely investigated, a large number of fundamental questions are still open, many of them concerning its temporal structure. Why does a certain population of neurons fires synchronously? Are these synchronized bursts following each other randomly or are they correlated according to some organizing principle? Far from addressing the fundamental problem of its functions, in the present article we focus on the problem of temporal correlations of ongoing cortical activity. We first overview the major features of its temporal structure and review recent experimental results, with particular emphasis on alternative approaches inspired in the theory of stochastic processes; then we introduce a neuronal network model inspired in self organized criticality and compare numerical results with experimental findings.


European Physical Journal Special Topic Temporal Organization Microelectrode Array Wait Time Distribution Avalanche Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Berger, Arch. Psychiatr. Nervenkr. 87, 527 (1929)CrossRefGoogle Scholar
  2. 2.
    G. Buzsaki, A. Draguhn, Science 304, 1926 (2004)CrossRefADSGoogle Scholar
  3. 3.
    J.M. Beggs, D. Plenz, J. Neurosci. 23, 11167 (2003)Google Scholar
  4. 4.
    T. Petermann, T.C. Thiagarajan, M. Lebedev, M. Nicolelis, D.R. Chialvo, D. Plenz, PNAS 106(37), 15921 (2009)CrossRefADSGoogle Scholar
  5. 5.
    O. Shriki, J. Alstott, F. Carver, T. Holroyd, R.N.A. Hanson, M.L. Smith, R. Coppola, E. Bullmore, D. Plenz, J. Neurosci. 33(16), 7079 (2013)CrossRefGoogle Scholar
  6. 6.
    D. Fraiman, D.R. Chialvo, Front. Physiol. 3, 307 (2012)CrossRefGoogle Scholar
  7. 7.
    E. Tagliazucchi, P. Balenzuela, D. Fraiman, D.R. Chialvo, Front. Physiol, 3, 15 (2012)CrossRefGoogle Scholar
  8. 8.
    A. Haimovici, E. Tagliazucchi, P. Balenzuela, D.R. Chialvo, Phys. Rev. Lett. 110, 178101 (2013)CrossRefADSGoogle Scholar
  9. 9.
    S. Scarpetta, A. de Candia, PLoS ONE 8(6), e64162 (2013)CrossRefADSGoogle Scholar
  10. 10.
    T.H. Bullock, M.C. McClune, J.Z. Achimowicz, V.J. Iragui-Madoz, R.B. Duckrov, S.S. Spencer, Proc. Natl. Acad. Sci. USA 92, 11568 (1995)CrossRefADSGoogle Scholar
  11. 11.
    T.H. Bullock, M.C. McClune, J.T. Enright, Neuroscience 121, 233 (2003)CrossRefGoogle Scholar
  12. 12.
    E. Novikov, A. Novikov, D. Shannahoff-Khalsa, B. Schwartz, J. Wright, Phys. Rev. Lett. 97, 118102 (2006)CrossRefGoogle Scholar
  13. 13.
    K.L. Hansen, V.V. Nikouline, J.M. Palva, R.J. IImoniemi, J. Neurosci. 21, 4 (2001)Google Scholar
  14. 14.
    C. Bedard, H. Kröger, A. Destexhe, Phys. Rev. Lett. 97, 118102 (2006)CrossRefADSGoogle Scholar
  15. 15.
    N. Dehghani, C. Bedard, Sidney S. Cash, E. Halgren, A. Destexhe, J. Comput. Neurosci. 21(29), 2010Google Scholar
  16. 16.
    A. Corral, Phys. Rev. Lett. 92(10), 108501 (2004)CrossRefADSGoogle Scholar
  17. 17.
    L. de Arcangelis, C. Godano, E. Lippiello, M. Nicodemi, Phys. Rev. Lett. 96, 051102 (2006)CrossRefADSGoogle Scholar
  18. 18.
    R. Segev, B. Morris, E. Hulata, N. Cohen, A. Palevski, E. Kapon, Y. Shapira, E.B. Jacob, Phys. Rev. Lett. 88, 11 (2002)CrossRefGoogle Scholar
  19. 19.
    F. Lombardi, H.J. Herrmann, C. Perrone-Capano, D. Plenz, L. de Arcangelis, Phys. Rev. Lett. 108, 228703 (2012)CrossRefADSGoogle Scholar
  20. 20.
    F. Lombardi, H.J. Herrmann, D. Plenz, L. de Arcangelis, Frontiers in System Neuroscience (preprint) (2014)Google Scholar
  21. 21.
    L. de Arcangelis, C. Perrone-Capano, H.J. Herrmann, Phys. Rev. Lett. 96, 028107 (2006)CrossRefADSGoogle Scholar
  22. 22.
    GL Pellegrini, L. de Arcangelis, H.J. Herrmann, C. Perrone-Capano, Phys. Rev. E 76, 028107 (2007)CrossRefGoogle Scholar
  23. 23.
    R. Cossart, A. Aronov, R. Yuste, Nature 423, 283 (2003)CrossRefADSGoogle Scholar
  24. 24.
    T.T.G. Hahn, B. Sakmann, M.R. Mehta, Nat. Neurosci. 9, 1359 (2006)CrossRefGoogle Scholar
  25. 25.
    M.O. Cunningham, D.D. Pervouchine, C. Racca, N.J. Kopell, C.H. Davies, R.S.G. Jones, R.D. Traub, M.A. Whittington, PNAS 103, 5597 (2006)CrossRefADSGoogle Scholar
  26. 26.
    B.J. He, J.M. Zempel, A.Z. Snyder, M.E. Raichle, Neuron 66, 353 (2010)CrossRefGoogle Scholar
  27. 27.
    A. Mazzoni, F.D. Broccard, E. Garcia-Perez, P. Bonifazi, E.M. Ruaro, V. Torre, PLoS ONE 2(5), e439 (2007)CrossRefADSGoogle Scholar
  28. 28.
    V. Pasquale, P. Massobrio, L.L. Bologna, M. Chiappalone, S. Martinoia, J. Neurosci. 153, 1354 (2008)CrossRefGoogle Scholar
  29. 29.
    D.E. Gireesh, D. Plenz, PNAS 105(21), 7576 (2008)CrossRefADSGoogle Scholar
  30. 30.
    D. Millman, S. Mihalas, A. Kirkwood, E. Niebur, Nat. Phys. 6, 801 (2010)CrossRefGoogle Scholar
  31. 31.
    A. Bragin, G. Jandoó, Z. Nadasdy, J. Hetke, K. Wise, G. Buzsaki, J. Neurosci. 15, 47 (1995)Google Scholar
  32. 32.
    A. Corral, Phys. Rev. Lett. 95(2), 028501 (2005)CrossRefADSGoogle Scholar
  33. 33.
    T.L. Ribeiro, M. Copelli, F. Caixeta, H. Belchior, D.R. Chialvo, PLoS ONE 5, e14129 (2010)CrossRefADSGoogle Scholar
  34. 34.
    V.M. Eguiluz, D. Chialvo, G.A. Cecchi, M. Baliki, A.V. Apkarian, Phys. Rev. Lett. 94, 018102 (2005)CrossRefADSGoogle Scholar
  35. 35.
    L. de Arcangelis, H.J. Herrmann, Front. Physio. 3, 62 (2012)CrossRefGoogle Scholar
  36. 36.
    K.J. Staley, M. Longacher, J.S. Bains, A. Yee, Nat. Neurosci. 1, 201 (1998)CrossRefGoogle Scholar
  37. 37.
    S.M. Thompson, H.L. Haas, B.H. Ghwiler, J. Physiol. 451, 347 (1992)Google Scholar
  38. 38.
    M.V. Sanchez-Vives, L.G. Novak, D.A. McCormick, J. Neurosci. 20, 4286 (2000)Google Scholar
  39. 39.
    E. Maeda, H.P. Robinson, A. Kawana, J. Neurosci. 15, 6834 (1995)Google Scholar
  40. 40.
    C. Wilson, Scholarpedia J. 3(6), 1410 (2008)CrossRefADSGoogle Scholar
  41. 41.
    I. Timofeev, F. Grenier, M. Steriade, PNAS 98(4), 1924 (2001)CrossRefADSGoogle Scholar
  42. 42.
    W. Shew, H. Yang, T. Petermann, R. Roy, D. Plenz, J. Neurosci. 29(49), 15595 (2009)CrossRefGoogle Scholar
  43. 43.
    D. Plenz, A. Aertsen, Neuroscience 70, 893 (1996)CrossRefGoogle Scholar
  44. 44.
    W.H. Press, Astrophys. 7, 103 (1978)Google Scholar
  45. 45.
    R.F. Voss, J. Clark, Nature 258, 317 (1975)CrossRefADSGoogle Scholar
  46. 46.
    W.S. Pritchard, Int. J. Neurosci. 66, 119 (1992)CrossRefGoogle Scholar
  47. 47.
    C. Tang, P. Bak, K. Wiesenfeld, Phys. Rev. A 38, 1 (1988)MathSciNetCrossRefGoogle Scholar
  48. 48.
    L. Laurson, M.J. Alava, S. Zapperi, J. Stat. Mech. L11001 (2005)Google Scholar
  49. 49.
    E. Lippiello, de Arcangelis, C. Godano, Phys. Rev. Lett. 100, 038501 (2008)CrossRefADSGoogle Scholar
  50. 50.
    G. Boffetta, V. Carbone, P. Giuliani, P. Veltri, A. Vulpiani, Phys. Rev. Lett. 83(22), 4662 (1999)CrossRefADSGoogle Scholar
  51. 51.
    T. Utsu, International Handbook of Earthquake and Engineering Seismology, Vol. 81A (Academic Press, 2002)Google Scholar
  52. 52.
    P. De Los Rios, Y.-C. Zhang, Phys. Rev. Lett. 82(3), 472 (1999)CrossRefADSGoogle Scholar
  53. 53.
    R. Sanchez, D.E. Newman, D.A. Carreras, Phys. Rev. Lett. 88(6), 068302 (2002)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  1. 1.Institute of Computational Physics for Engineering Materials, ETHZurichSwitzerland
  2. 2.Department of Industrial and Information EngineeringSecond University of Naples, INFN Gr. Coll. SalernoAversa (CE)Italy

Personalised recommendations