Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 11, pp 2107–2118 | Cite as

From human mobility to renewable energies

Big data analysis to approach worldwide multiscale phenomena
  • F. Raischel
  • A. Moreira
  • P.G. Lind
Review
Part of the following topical collections:
  1. Dynamic Systems: From Statistical Mechanics to Engineering Applications

Abstract

We address and discuss recent trends in the analysis of big data sets, with the emphasis on studying multiscale phenomena. Applications of big data analysis in different scientific fields are described and two particular examples of multiscale phenomena are explored in more detail. The first one deals with wind power production at the scale of single wind turbines, the scale of entire wind farms and also at the scale of a whole country. Using open source data we show that the wind power production has an intermittent character at all those three scales, with implications for defining adequate strategies for stable energy production. The second example concerns the dynamics underlying human mobility, which presents different features at different scales. For that end, we analyze 12-month data of the Eduroam database within Portuguese universities, and find that, at the smallest scales, typically within a set of a few adjacent buildings, the characteristic exponents of average displacements are different from the ones found at the scale of one country or one continent.

Keywords

Wind Turbine European Physical Journal Special Topic Wind Farm Human Mobility Topological Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Brumfiel, Nature 282, 8 (2011)Google Scholar
  2. 2.
    K.N. Cukier, V. Mayer-Schoenberger, The Rise of Big Data (Foreign Affairs, May/June 2013)Google Scholar
  3. 3.
    S. Nelson, Nature 455, 36 (2008)CrossRefADSGoogle Scholar
  4. 4.
    A. Barberousse, S. Franceschelli, C. Imbert, Synthese 169, 557 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    M.C. González, C.A. Hidalgo, A.-L. Barabási, Nature 453, 779 (2008)CrossRefADSGoogle Scholar
  6. 6.
    D. Brockmann, L. Hufnagel, T. Geisel, Nature 439, 462 (2006)CrossRefADSGoogle Scholar
  7. 7.
    A. Moreira, P.G. Lind, Human mobility patterns at the smallest scales (submitted) (2014)Google Scholar
  8. 8.
    R.N. Mantegna, H.E. Stanley, Introduction to Econophysics: Correlations and Complexity in Finance (Cambridge University Press, 2000)Google Scholar
  9. 9.
    D.Y. Kenett, E. Ben-Jacob, H.E. Stanley, G. Gur-Gershgoren, Sci. Rep. 3, 2110 (2013)ADSGoogle Scholar
  10. 10.
    D. Sornette, Why Stock Markets Crash: Critical Events in Complex Financial Systems (Princeton University Press, 2009)Google Scholar
  11. 11.
    V. Filimonov, D. Sornette, Phys. Rev. E 85, 056108 (2012)CrossRefADSGoogle Scholar
  12. 12.
    H. Levy, M. Levy, S. Solomon, Microscopic Simulation of Financial Markets: From Investor Behavior to Market Phenomena (Academic Press, 2000)Google Scholar
  13. 13.
    J.P. Da Cruz, P.G. Lind, Eur. Phys. J. B 85, 1 (2012)CrossRefGoogle Scholar
  14. 14.
    T. Preis, H.S. Moat, H.E. Stanley, Sci. Rep. 3, 1684 (2013)ADSGoogle Scholar
  15. 15.
    L. Laloux, P. Cizeau, J.P. Bouchaud, M. Potters, Phys. Rev. Lett. 83, 1467 (1999)CrossRefADSGoogle Scholar
  16. 16.
    V. Plerou, P. Gopikrishnan, B. Rosenow, A.N. Amaral, H.E. Stanley, Phys. Rev. Lett. 83, 1471 (1999)CrossRefADSGoogle Scholar
  17. 17.
    S. Camargo, S.M.D. Queirós, C. Anteneodo, Eur. Phys. J. B 86, 159 (2013)MathSciNetCrossRefADSGoogle Scholar
  18. 18.
    J.L. McCauley, Dynamics of Markets: Econophysics and Finance (Cambridge University Press, 2004)Google Scholar
  19. 19.
    A. Emanuele, A. Pluchino, A. Rapisarda, D. Helbing, available at http://arxiv.org/abs/1309.3639 (2013)
  20. 20.
    W. Kinzel, I. Kanter, J. Phys. A 36, 11173 (2003)MathSciNetCrossRefzbMATHADSGoogle Scholar
  21. 21.
    A.W. Lo, Journal of Investment Management (JOIM), Second Quarter (2010)Google Scholar
  22. 22.
    F. Abraham, Adv. Phys. 52, 727 (2003)CrossRefADSGoogle Scholar
  23. 23.
    F. Kun, R.C. Hidalgo, F. Raischel, H.J. Herrmann, Int. J. Frac. 140, 255 (2006)CrossRefzbMATHGoogle Scholar
  24. 24.
    F. Kun, I. Varga, S. Lennartz-Sassinek, I.G. Main, Phys. Rev. Lett. 112, 065501 (2014)CrossRefADSGoogle Scholar
  25. 25.
    D. Sornette, M.J. Werner, Extreme Environmental Events (Springer, New York, 2011), p. 825Google Scholar
  26. 26.
    J.R. Holliday, D.L. Turcotte, J.B. Rundle, Pure Appl. Geophys. 165, 1003 (2008)CrossRefADSGoogle Scholar
  27. 27.
    A. Shekhawat, S. Zapperi, J.P. Sethna, Phys. Rev. Lett. 110, 185505 (2003)CrossRefADSGoogle Scholar
  28. 28.
    M. Bottiglieri, L. de Arcangelis, C. Godano, E. Lippiello, Phys. Rev. Lett. 104, 158501 (2010)CrossRefADSGoogle Scholar
  29. 29.
    S. Touati, M. Naylor, I.G. Main, Phys. Rev. Lett. 102, 168501 (2009)CrossRefADSGoogle Scholar
  30. 30.
    J. Davidsen, P. Grassberger, M. Paczuski, Phys. Rev. E 77, 066104 (2008)MathSciNetCrossRefADSGoogle Scholar
  31. 31.
    S. Pradhan, A. Hansen, P.C. Hemmer, Phys. Rev. Lett. 95, 125501 (2005)CrossRefADSGoogle Scholar
  32. 32.
    E. Lippiello, W. Marzocchi, L. de Arcangelis, C. Godano, Sci. Rep. 2, 846 (2012)CrossRefADSGoogle Scholar
  33. 33.
    I. Main, “Is the Reliable Prediction of Individual Earthquakes a Realistic Scientific Goal”, in Nature Debates (1999); available at www.nature.com/nature/debates/earthquake/equake_frameset.html
  34. 34.
    I.G. Main, M. Naylor, Eur. Phys. J. Special Topics 205, 183 (2012)CrossRefADSGoogle Scholar
  35. 35.
    E. Fehr, D. Kadau, J.S. Andrade Jr., H.J. Herrmann, Phys. Rev. Lett. 106, 048501 (2011)CrossRefADSGoogle Scholar
  36. 36.
    P.A. Morais, E.A. Oliveira, N.A.M. Araújo, H.J. Herrmann, J.S. Andrade Jr., Phys. Rev. E 84, 016102 (2011)CrossRefADSGoogle Scholar
  37. 37.
    H. Seybold, J.S. Andrade, H.J. Herrmann, PNAS 104, 16804 (2007)CrossRefADSGoogle Scholar
  38. 38.
    B. Biswal, P.-E. Øren, R. Held, S. Bakke, R. Hilfer, Phys. Rev. E 75, 1 (2007)CrossRefGoogle Scholar
  39. 39.
    K.J. Schrenk, N.A.M. Araújo, H.J. Herrmann, Sci. Rep. 2, 751 (2012)ADSGoogle Scholar
  40. 40.
    S. Succi, O. Filippova, Comp. Sci. Engin. 3, 26 (2001)CrossRefGoogle Scholar
  41. 41.
    A. Narváez, T. Zauner, F. Raischel, R. Hilfer, J. Harting, J. Stat. Mech. 11, P11026 (2010)CrossRefGoogle Scholar
  42. 42.
    A. Narváez, K. Yazdchi, S. Luding, J. Harting, J. Stat. Mech. 2, P02038 (2013)Google Scholar
  43. 43.
    S. Lovejoy, D. Schertzer, V. Allaire, T. Bourgeois, S. King, J. Pinel, J. Stolle, Geophys. Res. Lett. 36, L01801 (2009)ADSGoogle Scholar
  44. 44.
    R. Donner, S. Barbosa, J. Kurths, N. Marwan, Eur. Phys. J. Special Topics 174, 1 (2009)CrossRefADSGoogle Scholar
  45. 45.
    R. Friedrich, J. Peinke, M. Sahimi, M.R.R. Tabar, Phys. Rep. 506, 87 (2011)MathSciNetCrossRefADSGoogle Scholar
  46. 46.
    M.R.R. Tabar, M. Anvari, P. Milan, G. Lohmann, E. Lorenz, J. Peinke, Renewable Power from Wind and Solar: Their Resilience and Extreme Events (submitted) (2013)Google Scholar
  47. 47.
    P. Milan, A. Morales, M. Wächter, J. Peinke, Wind Energy-Impact of Turbulence (Springer, Berlin, Heidelberg, 2014), p. 73Google Scholar
  48. 48.
    O. Kamps, Wind Energy-Impact of Turbulence (Springer, Berlin, Heidelberg, 2014), p. 67Google Scholar
  49. 49.
    P. Costa, V.V. Lopes, A. Estanqueiro, “Impact of Weather Regimes on the Wind Power Ramp Forecast”, 12th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants, London, October 22–24 (London, UK, 2013)Google Scholar
  50. 50.
    G.L. Johnson, Wind Energy Systems (Kansas State University, 2006)Google Scholar
  51. 51.
    T. Burton, D. Sharpe, N. Jenkins, E. Bossanyi, Wind Energy Handbook (Wiley, 2001)Google Scholar
  52. 52.
    P. Milan, M. Wächter, J. Peinke, Phys. Rev. Lett. 110, 138701 (2013)CrossRefADSGoogle Scholar
  53. 53.
    V.V. Lopes, T. Scholz, F. Raischel, P.G. Lind, J. Phys. Conf. Ser. 524, 012183 (2014)CrossRefADSGoogle Scholar
  54. 54.
    S. Ghashghaie, W. Breymann, J. Peinke, P. Talkner, Y. Dodge, Nature 381, 767 (2006)CrossRefADSGoogle Scholar
  55. 55.
    The data from Irish and the Australian Waubra wind farm with 192 MW is open access data, extracted from http://www.eirgrid.com/operations/systemperformancedata/windgeneration/ and http://www.nemweb.com.au/Reports/CURRENT/Dispatch_SCADA/ respectively
  56. 56.
    R. Ahas, A. Aasa, Ü. Mark, T. Pae, A. Kull, Tourism Manag. 28, 898 (2006)CrossRefGoogle Scholar
  57. 57.
    R. Ahas, A. Aasa, S. Silm, R. Aunap, H. Kalle, Ü. Mark, Cart. Geog. Inf. Sci. 34, 259 (2007)CrossRefGoogle Scholar
  58. 58.
    A. Moreira, M.Y. Santos, “Enhancing a user context by real-time clustering mobile trajectories”, Proceedings of the International Conference on Information Technology: coding and computing ITCC 2005, April 4–8, Las Vegas, NV, USA, 2005Google Scholar
  59. 59.
    A. Moreira, M.Y. Santos, “From GPS tracks to context – Inference of high-level context information through spatial clustering” Proceedings of the II International Conference & Exhibition on Geographic Information – GIS Planet 2005, May 30–June 2, Estoril, Portugal, 2005Google Scholar
  60. 60.
    F. Meneses, A. Moreira, “Using GSM CellID Positioning for Place Discovering”, Proceedings of the Locare06 First Workshop on Location Based Services for Health Care, Innsbruck, Austria, November 28, 2006Google Scholar
  61. 61.
    P.G. Lind, M.C. González, H.J. Herrmann, Phys. Rev. E 72, 056127 (2005)CrossRefADSGoogle Scholar
  62. 62.
    M.C. González, P.G. Lind, H.J. Herrmann, Phys. Rev. Lett. 96, 088702 (2006)CrossRefADSGoogle Scholar
  63. 63.
    M.C. González, P.G. Lind, H.J. Herrmann, Physica D 224, 137 (2006)CrossRefzbMATHADSGoogle Scholar
  64. 64.
    P.G. Lind, H.J. Herrmann, New J. Phys. 9, 228 (2007)CrossRefADSGoogle Scholar
  65. 65.
    P.G. Lind, J.S. Andrade Jr., L.R. da Silva, H.J. Herrmann, Europhys. Lett. 78, 68005 (2007)CrossRefADSGoogle Scholar
  66. 66.
    S. Prades, D. Bonamy, D. Dalmas, E. Bouchaud, C. Guillot, Int. J. Sol. Str. 42, 637 (2005)CrossRefzbMATHGoogle Scholar
  67. 67.
    O. Durán, L.J. Moore, PNAS 110, 17217 (2013)CrossRefADSGoogle Scholar
  68. 68.
    A. Thess, Phys. Rev. Lett. 111, 110602 (2013)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • F. Raischel
    • 1
    • 2
  • A. Moreira
    • 3
  • P.G. Lind
    • 4
  1. 1.Instituto Dom Luiz, CGUL, University of LisbonLisbonPortugal
  2. 2.Department of Theoretical PhysicsUniversity of DebrecenDebrecenHungary
  3. 3.Algoritmi Research Centre, Universidade do MinhoGuimarãesPortugal
  4. 4.ForWind and TWiSt, Institute of Physics, University of OldenburgOldenburgGermany

Personalised recommendations