Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 10, pp 2035–2040 | Cite as

Photorefractive tuning of whispering gallery modes of a spherical resonator integrated inside a microstructured optical fibre

  • K. Kosma
  • I. Konidakis
  • S. Pissadakis
Regular Article Resonant Geometries/Structures
Part of the following topical collections:
  1. Taking Detection to the Limit: Biosensing with Optical Microcavities

Abstract

We demonstrate the photorefractive tuning of the whispering gallery modes of a single BaTiO3 microsphere resonator integrated inside a grapefruit-shaped microstructured optical fibre, upon CW laser irradiation at 532 nm while using irradiation intensities up to 5.5 W/cm2. Temporal evolution results of the WGM spectra are provided with respect to the illumination and relaxation conditions applied.

Keywords

European Physical Journal Special Topic Material Phase Change Refractive Index Change Whisper Gallery Mode Glass Microsphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Vollmer, S. Arnold, D. Keng, Proc. Natl Acad. Sci. 105, 20701 (2008)CrossRefADSGoogle Scholar
  2. 2.
    D. Farnesi, et al., Phys. Rev. Lett. 112, 093901 (2014)CrossRefADSGoogle Scholar
  3. 3.
    W.v. Klitzing, et al., J. Opt. B: Quantum Semiclass. Opt. 2, 204 (2000)CrossRefADSGoogle Scholar
  4. 4.
    K. Totsuka, M. Tomita, J. Opt. Soc. Am. B.23, 2194 (2006)CrossRefADSGoogle Scholar
  5. 5.
    M. Cai, et al., Opt. Lett. 25, 1430 (2000)CrossRefADSGoogle Scholar
  6. 6.
    K. Kosma, et al., Opt. Lett. 38, 1301 (2013)CrossRefADSGoogle Scholar
  7. 7.
    J. Feinberg, Opt. Lett. 7, 486 (1982)CrossRefADSGoogle Scholar
  8. 8.
    N.A. Vainos, S. Mailis, M.C. Gower, Appl. Phys. Lett. 60, 1529 (1992)CrossRefADSGoogle Scholar
  9. 9.
    G.A. Brost, R.A. Motes, J.R. Rotge, J. Opt. Soc. Am. B. 5, 1879 (1988)CrossRefADSGoogle Scholar
  10. 10.
    A.A. Savchenkov, et al., Phys. Rev. B. 74, 245119 (2006)CrossRefADSGoogle Scholar
  11. 11.
    A. Canciamilla, et al., Opt. Lett. 36, 4002 (2011)CrossRefADSGoogle Scholar
  12. 12.
    A.A. Savchenkov, et al., IEEE Photon. Technol. Lett. 17, 136 (2005)CrossRefADSGoogle Scholar
  13. 13.
    S. Wildermuth, et al., in Lasers and Electro-Optics Europe (CLEO EUROPE/IQEC), 2013 Conference on and International Quantum Electronics Conference (2013), p. 1Google Scholar
  14. 14.
    O. Svitelskiy, et al., Opt. Lett. 36, 2862 (2011)CrossRefADSGoogle Scholar
  15. 15.
    A.B. Matsko, V.S. Ilchenko, IEEE J. Quantum Electron. 12, 3 (2006)CrossRefGoogle Scholar
  16. 16.
    M.B. Smith, et al., J. Am. Chem. Soc. 130, 6955 (2008)CrossRefGoogle Scholar
  17. 17.
    M. Wöhlecke, V. Marrello, A. Onton, J. Appl. Phys. 48, 1748 (1977)CrossRefADSGoogle Scholar
  18. 18.
    M. Kaczmarek, et al., Opt. Mater. 4, 158 (1995)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • K. Kosma
    • 1
  • I. Konidakis
    • 1
  • S. Pissadakis
    • 1
  1. 1.Institute of Electronic Structure and Laser (IESL)Foundation for Research and Technology-Hellas (FORTH)HeraklionGreece

Personalised recommendations