The European Physical Journal Special Topics

, Volume 223, Issue 10, pp 2009–2021 | Cite as

A high efficiency label-free photonic biosensor based on vertically stacked ring resonators

  • C. E. Campanella
  • C. M. Campanella
  • F. De Leonardis
  • V. M. N. Passaro
Regular Article Resonant Geometries/Structures
Part of the following topical collections:
  1. Taking Detection to the Limit: Biosensing with Optical Microcavities


In this paper we propose an optical biosensor based on two vertically stacked Silicon on Insulator (SOI) micro-ring resonators interacting with a microfluidic ring channel. This device behaves as a resonant optical coupler and it is very sensitive to the variation of the coupling coefficient between the two vertically stacked ring resonators. A ring microfluidic channel is proposed in the coupling region between the two vertically stacked ring resonators. The inner walls of the channel are funzionalized in order to the trap a specific biological species. Assuming a biotin-streptavidin system, the straptividin trapping gives rise to a change of the biological thickness of about 3 nm. This thickness increase of the deposited layer leads to a consequent change in the coupling strength between the two rings. These theoretical predictions have been validated by using both 3D Finite-Difference Time-Domain (FDTD) and 3D full-vectorial Finite Element Method (FEM) approaches. Moreover, by appropriately choosing the design parameters of the micro-resonant structure, we evaluate a sensitivity of the spectral response to the streptavidin adlayer variation of about 20% nm−1 for TE polarization and 34% nm−1 for TM polarization, which represents an important achievement to obtain selective SOI bio-sensors with ultra-high resolution.


European Physical Journal Special Topic Spectral Response Ring Resonator Optical Biosensor Ring Radius 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Vollmer, Nanophotonics 1, 267 (2012)CrossRefADSGoogle Scholar
  2. 2.
    R.F. Service, Science 282, 399 (1998)CrossRefGoogle Scholar
  3. 3.
    C.A. Barrios, Anal. Bioanal. Chem. 403, 1467 (2012)CrossRefGoogle Scholar
  4. 4.
    X. Fan, Anal. Chim. Acta. 620, 8 (2008)CrossRefGoogle Scholar
  5. 5.
    V.M.N. Passaro, Sensors 12, 15558 (2012)CrossRefGoogle Scholar
  6. 6.
    M. La Notte, Sensors 14, 4831 (2014)CrossRefGoogle Scholar
  7. 7.
    C. Ciminelli, Prog. Quant. Electron. 37, 51 (2013)CrossRefADSGoogle Scholar
  8. 8.
    K. De Vos, Opt. Express 15, 7610 (2007)CrossRefADSGoogle Scholar
  9. 9.
    A.L. Washburn, Anal. Chem. 82, 69 (2009)CrossRefGoogle Scholar
  10. 10.
    V.S.-Y. Lin, Science 278, 840 (1997)CrossRefADSGoogle Scholar
  11. 11.
    M. Li, Anal. Chem. 85, 9328 (2013)CrossRefGoogle Scholar
  12. 12.
    C. Ciminelli, Opt. Las. Technol. 48, 294 (2013)CrossRefADSGoogle Scholar
  13. 13.
    M. Sumetsky, Opt. Express 13, 6354 (2005)CrossRefADSGoogle Scholar
  14. 14.
    C. Ciminelli, Opt. Express 18, 2973 (2010)CrossRefADSGoogle Scholar
  15. 15.
    M. Shafiei, Appl. Opt. 48, G148 (2009)CrossRefADSGoogle Scholar
  16. 16.
    M. Shafiei, Opt. Express 18, 25509 (2010)CrossRefADSGoogle Scholar
  17. 17.
    J.T. Bessette, Opt. Express 21, 13580 (2013)CrossRefADSGoogle Scholar
  18. 18.
    N. Sherwood-Droz, Opt. Express 19, 17758 (2011)CrossRefADSGoogle Scholar
  19. 19.
    F. Baldini, Optical Chemical Sensors (Springer, 2004)Google Scholar
  20. 20.
    P. Koonath, Opt. Express 15, 12686 (2007)CrossRefADSGoogle Scholar
  21. 21.
    C.E. Campanella, Opt. Express 21, 29435 (2013)CrossRefADSGoogle Scholar
  22. 22.
    J.M. Liu, Photonic Devices (Cambridge University Press, 2005)Google Scholar
  23. 23.
    F. De Leonardis, Sens. Act. B: Chem. 178, 233 (2013)CrossRefGoogle Scholar
  24. 24.
    B. Troia, Proc. of the 2012 Annual Symp. of the IEEE Photon. Soc., 61 (2012)Google Scholar
  25. 25.
    F. Dell’Olio, Opt. Express 15, 4977 (2007)CrossRefADSGoogle Scholar
  26. 26.
    B. Troia, Adv. Optoelectron. 2014, 490405 (2014)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • C. E. Campanella
    • 1
  • C. M. Campanella
    • 2
  • F. De Leonardis
    • 1
  • V. M. N. Passaro
    • 1
  1. 1.Photonics Research GroupPolitecnico di BariBariItaly
  2. 2.Integrated Photonics LaboratoryBoston UniversityBostonUSA

Personalised recommendations