The European Physical Journal Special Topics

, Volume 223, Issue 10, pp 1995–2002 | Cite as

Elastic scattering from a sapphire microsphere placed on a silica optical fiber coupler: Possible applications to biosensing

  • M. S. Murib
  • Y. O. Yılmaz
  • A. Demir
  • Ş. Işçi
  • T. Bilici
  • A. Kurt
  • P. Wagner
  • A. Serpengüzel
Regular Article WGM Resonator Materials
Part of the following topical collections:
  1. Taking Detection to the Limit: Biosensing with Optical Microcavities


Elastic light scattering is performed in the original band of optical fiber communication at 1300 nm for a 500 μm sapphire microsphere placed on a silica optical fiber half coupler. The morphology dependent resonances (MDRs) are observed in the transverse magnetically (TM) polarized and transverse electrically (TE) polarized 0 transmission and 90 elastic scattering obtained from the sapphire microsphere. The TE and TM MDRs can be detected selectively with the use of a Glan polarizer. The TE and TM polarization selectivity provides the ability to select relative MDR to BG levels. The TM polarization provides higher MDR signal to background ratio (SBR) and is suitable for optical monitoring, biological sensing or any other optoelectronic application that requires a high resolution optical filter. The polar angular mode spacing of 0.36 nm of the resonances correlates well with the optical size of the sapphire microsphere. The autocorrelation of the 90 elastic scattering spectra also shows peaks at 0.36 nm. The spectral linewidths of the resonances are on the order of 0.1 nm, which corresponds to quality factors on the order of 104. A sapphire sphere with a radius of 500 μm and relative refractive index of 1.31, resonances will red-shift by 1.01 nm (0.077%). This shift is on the order of 10 linewidths, making sapphire biophotonic sensors an interesting alternative to silica biophotonic sensors.


European Physical Journal Special Topic Transverse Magnetically Transverse Electrically Mode Spacing Relative Refractive Index 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Roll, G. Schweiger, J. Opt. Soc. Am. A 17, 1301 (2008)MathSciNetCrossRefADSGoogle Scholar
  2. 2.
    A. Demir, E. Yüce, A. Serpengüzel, J.A. Lock, Appl. Opt. 50, 6652 (2011)CrossRefADSGoogle Scholar
  3. 3.
    H. Agha, J.E. Sharping, M.A. Foster, A.L. Gaeta, Appl. Phys. B 83, 303 (2006)CrossRefADSGoogle Scholar
  4. 4.
    Y. Hu, L. Zhang, X. Xiao, Z. Li, Y. Li, T. Chu, Y. Su, Y. Yu, J. Yu, J. Optics 14, 065501 (2012)CrossRefADSGoogle Scholar
  5. 5.
    K. Xu, G.K.P. Lei, S.M.G. Lo, Z. Cheng, C. Shu, H.K. Tsang, IEEE Photon. Technol. Lett. 24, 1221 (2012)CrossRefADSGoogle Scholar
  6. 6.
    S.-Y. Cho, G. Dobbs, N.M. Jokerst, B. Mizaikoff, T. Cooper, in Proceeding of Conference on Lasers and Electro-Optics (CLEO) 2007, Baltimore, Maryland, Paper CWE4Google Scholar
  7. 7.
    A. Demir, A. Serpengüzel, IEE Proc.-Nanobiotechnol. 152, 105 (2005)CrossRefGoogle Scholar
  8. 8.
    Y. Wu, D. Zhang, P. Yin, F. Vollmer, Small, doi: 10.1002/smll.201303558, 2014
  9. 9.
    U. Woggon, R. Wannemacher, M.V. Artemyev, B. Möller, N. Lethomas, V. Anikeyev, O. Schöps, Appl. Phys. B 77, 469 (2003)CrossRefADSGoogle Scholar
  10. 10.
    J. Ward, O. Benson, Laser Photon. Rev. 5, 553 (2011)CrossRefGoogle Scholar
  11. 11.
    Y.O. Yılmaz, A. Demir, A. Kurt, A. Serpengüzel, IEEE Photon. Technol. Lett. 17, 1662 (2005)CrossRefADSGoogle Scholar
  12. 12.
    T. Bilici, S. Işçi, A. Kurt, A. Serpengüzel, IEEE Photon. Technol. Lett. 16, 476 (2004)CrossRefADSGoogle Scholar
  13. 13.
    E. Xifré-Pérez, J. Domenech, R. Fenollosa, P. Muoz, J. Capmany, F. Meseguer, Opt. Express 19, 3185 (2011)CrossRefADSGoogle Scholar
  14. 14.
    X. Li, A. Pyatenko, Y. Shimizu, H. Wang, K. Koga, N. Koshizaki, Langmuir 27, 5076 (2011)CrossRefGoogle Scholar
  15. 15.
    P. Wang, T. Lee, M. Ding, A. Dhar, T. Hawkins, P. Foy, Y. Semenova, Q. Wu, J. Sahu, G. Farrell, J. Ballato, G. Brambilla, Opt. Lett. 37, 728 (2012)CrossRefADSGoogle Scholar
  16. 16.
    E. Yüce, O. Gürlü, A. Serpengüzel, IEEE Photon. Technol. Lett. 21, 1481 (2009)CrossRefGoogle Scholar
  17. 17.
    H. Yılmaz, A. Serpengüzel, in Proceedings of SPIE 8069 on Integrated Photonics: Materials, Devices, and Applications, 2011, edited by A. Serpengüzel, G.C. Righini, A. Leipertz, p. 80690LGoogle Scholar
  18. 18.
    A.Y. Smirnov, S.N. Rashkeev, A.M. Zagoskin, Appl. Phys. Lett. 80, 3503 (2002)CrossRefADSGoogle Scholar
  19. 19.
    G. Guan, F. Vollmer, Appl. Phys. Lett. 86, 121115 (2005)CrossRefADSGoogle Scholar
  20. 20.
    H. Konishi, H. Fujiwara, S. Takeuchi, K. Sasaki, Appl. Phys. Lett. 89, 121107 (2006)CrossRefADSGoogle Scholar
  21. 21.
    S. Götzinger, L. deS. Menezes, O. Benson, D.V. Talapin, N. Gaponik, H. Weller, A.L. Rogach, V. Sandoghdar, J. Opt. B 6, 154 (2004)CrossRefADSGoogle Scholar
  22. 22.
    B.J.M. Hausmann, B. Shields, Q.M. Quan, P. Maletinsky, M. McCutcheon, J.T. Choy, T.M. Babinec, A. Kubanek, A. Yacoby, M.D. Lukin, M. Lončar, Nano Lett. 12, 1578, 2012CrossRefADSGoogle Scholar
  23. 23.
    V.S. Ilchenko, A.M. Bennett, P. Santini, A.A. Savchenkov, A.B. Matsko, L. Maleki, Opt. Lett. 38, 4320 (2013)CrossRefADSGoogle Scholar
  24. 24.
    A.G. Mamalis, J.J. Ramsden, A.I. Grabchenko, L.A. Lytvynov, V.A. Filipenko, S.N. Lavrynenko, Biol. Phys. Chem. 6, 113 (2006)CrossRefGoogle Scholar
  25. 25.
    T. Takahashi, T.R.H. Sato, O. Miho, Y. Suzuki, M. Tsunoda, K.I. Nakagawa, Bull. Tokyo. Dent. Coll. 49, 23 (2008)CrossRefGoogle Scholar
  26. 26.
    M.R. Rieger, W.K. Adams, G.L. Kinzel, M.O. Brose, J. Prosthet. Dent. 61, 717 (1989)CrossRefGoogle Scholar
  27. 27.
    G.Q. Zhou, Y. Dong, J. Xu, H. Li, J.L. Si, X.B. Qian, X.Q. Li, Mater. Lett. 60, 901 (2006)CrossRefGoogle Scholar
  28. 28.
    M. Murib, A. Tran, W. De Ceuninck, M. Schöning, M. Nesládek, A. Serpengüzel, P. Wagner, Phys. Status Solidi A 209, 1804 (2012)CrossRefADSGoogle Scholar
  29. 29.
    M.S. Murib, E. Yüce, O. Gürlü, A. Serpengüzel, Photon. Res. 2, 45 (2014)CrossRefGoogle Scholar
  30. 30.
    P. Chýlek, J. Opt. Soc. Am. A 7, 1609 (1990)CrossRefADSGoogle Scholar
  31. 31.
    W.T. Grandy, Scattering of waves from large spheres (Cambridge University Press, 2000)Google Scholar
  32. 32.
    A. Serpengüzel, S. Arnold, G. Griffel, J.A. Lock, J. Opt. Soc. Am. B 14, 790 (1997)CrossRefADSGoogle Scholar
  33. 33.
    Z.B. Bahşi, A. Büyükaksoy, S.M. Ölmezcan, F. Şimşek, M.H. Aslan, A.Y. Oral, Sensors 9, 4890 (2009)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • M. S. Murib
    • 1
  • Y. O. Yılmaz
    • 2
    • 3
  • A. Demir
    • 2
    • 4
  • Ş. Işçi
    • 2
    • 5
  • T. Bilici
    • 2
    • 6
  • A. Kurt
    • 2
    • 7
  • P. Wagner
    • 1
  • A. Serpengüzel
    • 2
  1. 1.Institute for Materials ResearchHasselt University, IMODiepenbeekBelgium
  2. 2.Microphotonics Research Laboratory, Department of PhysicsKoç UniversityIstanbulTurkey
  3. 3.Silicon Photonics Systems GroupIntel CorporationSanta ClaraUSA
  4. 4.JDSU CorporationSan JoseUSA
  5. 5.Informatics and Information Security Research CenterTübitak BilgemGebze, KocaeliTurkey
  6. 6.Omnibil TeknolojiFatih, IstanbulTurkey
  7. 7.Vişne 2 MahallesiTeknofil LimitedIstanbulTurkey

Personalised recommendations