Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 10, pp 1989–1994 | Cite as

Crystalline MgF2 whispering gallery mode resonators for enhanced bulk index sensitivity

  • R. Zeltner
  • F. Sedlmeir
  • G. Leuchs
  • H. G. L. Schwefel
Regular Article WGM Resonator Materials
Part of the following topical collections:
  1. Taking Detection to the Limit: Biosensing with Optical Microcavities

Abstract

We report on experiments on refractrometric sensing with crystalline Whispering Gallery Mode (WGM) resonators made of magnesium fluoride, which has a refractive index that is only slightly larger than that of water (Δn ≈ 0.05). The resulting evanescent field of a WGM resonator placed in an aqueous environment penetrates therefore deep into the surrounding medium, which makes it a promising candidate for sensing applications. We measured a bulk index sensitivity of 1.09 nm/RIU (refractive index unit) in a resonator with a radius of R = 2.91 mm and intrinsic Q-factors of more than 108 in aqueous environments. Furthermore, we describe the fabrication process of crystalline WGM resonators.

Keywords

Refractive Index European Physical Journal Special Topic Polarization Beam Splitter Whispering Gallery Mode Refractive Index Contrast 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Vollmer, L. Yang, Nanophotonics 1, 3 (2012)CrossRefGoogle Scholar
  2. 2.
    S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, F. Vollmer, Opt. Lett. 28, 272 (2003)CrossRefADSGoogle Scholar
  3. 3.
    W. Liang, A.A. Savchenkow, A.B. Matsko, V.S. Ilchenko, D. Seidel, L. Maleki, Opt. Lett. 36, 2290 (2011)CrossRefGoogle Scholar
  4. 4.
    C.Y. Wang, T. Herr, P. Del’ Haye, A. Schliesser, J. Hofer, R. Holzwarth, T.W. Hänsch, N. Picqué, T.J. Kippenberg, Nat. Commun. 4, 1345 (2013)CrossRefADSGoogle Scholar
  5. 5.
    A.A. Savchenkov, A.B. Matsko, V.S. Ilchenko, N. Yu, L. Maleki, J. Opt. Soc. Am. B 24, 2988 (2007)CrossRefADSGoogle Scholar
  6. 6.
    F. Sedlmeir, M. Hauer, J.U. Fürst, G. Leuchs, H.G.L. Schwefel, Opt. Express 21, 23942 (2013)CrossRefADSGoogle Scholar
  7. 7.
    M.J. Dodge, Appl. Opt. 23, 1980 (1984)CrossRefADSGoogle Scholar
  8. 8.
    G.M. Hale, M.R. Querry, Appl. Opt. 12, 555 (1973)CrossRefADSGoogle Scholar
  9. 9.
    I.M. White, X. Fan, Opt. Express 16, 1020 (2008)CrossRefADSGoogle Scholar
  10. 10.
    M.R. Foreman, W.-L. Jin, F. Vollmer, Opt. Express 22, 5491 (2014)CrossRefADSGoogle Scholar
  11. 11.
    B.E. Little, J.P. Laine, H.A. Haus, J. Lightwave Technol. 17, 704 (1999)CrossRefADSGoogle Scholar
  12. 12.
    N.M. Hanumegowda, C.J. Stica, B.C. Patel, I. White, X. Fan, Appl. Phys. Lett. 87, 201107 (2005)CrossRefADSGoogle Scholar
  13. 13.
    D.V. Strekalov, A.A. Savchenkov, A.B. Matsko, N. Yu, Opt. Lett. 34, 713 (2009)CrossRefADSGoogle Scholar
  14. 14.
    I.S. Grudinin, V.S. Ilchenko, L. Maleki, Phys. Rev. A 74, 063806 (2006)CrossRefADSGoogle Scholar
  15. 15.
    J.V. Herrez, R. Belda, J. Sol. Chem. 35, 1315 (2006)CrossRefGoogle Scholar
  16. 16.
    I.S. Grudinin, A.B. Matsko, A.A. Savchenkov, D.V. Strekalov, V.S. Ilchenko, L. Maleki, Opt. Comm. 265, 33 (2006)CrossRefADSGoogle Scholar
  17. 17.
    H. Zhu, I.M. White, J.D. Suter, P.S. Dale, X. Fan, Opt. Express 15, 9139 (2007)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • R. Zeltner
    • 1
    • 2
  • F. Sedlmeir
    • 2
    • 3
  • G. Leuchs
    • 1
    • 2
  • H. G. L. Schwefel
    • 1
    • 2
    • 3
  1. 1.Institute for Optics, Information and PhotonicsUniversity of Erlangen-Nuremberg, GermanyErlangenGermany
  2. 2.Max-Planck-Institute for the Science of LightErlangenGermany
  3. 3.School in Advanced Optical TechnologieErlangenGermany

Personalised recommendations