Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 10, pp 1959–1969 | Cite as

Whispering gallery mode profiles in a coated microsphere

  • D. Ristić
  • A. Chiappini
  • M. Mazzola
  • D. Farnesi
  • G. Nunzi-Conti
  • G.C. Righini
  • P. Féron
  • G. Cibiel
  • M. Ferrari
  • M. Ivanda
Regular Article WGM Theory
Part of the following topical collections:
  1. Taking Detection to the Limit: Biosensing with Optical Microcavities

Abstract

The properties of whispering gallery modes (WGM) of a microsphere can be tailored by coating the resonator with a thin film. If the coating has a higher refractive index than the microsphere core, the resulting structure will have a configuration which has similarities both with a classical WGM resonator and with a planar waveguide. By choosing the film thickness and refractive index we can tailor the degree of confinement of the WGMs inside the sphere core, coating and surrounding medium, which will in turn influence the WGMs contact with its surroundings. We present a study of the effect of the coating on the WGM mode profiles in particular of a silicon coating on a silica sphere.

Keywords

European Physical Journal Special Topic High Refractive Index Planar Waveguide Whisper Gallery Mode Couple Mode Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Soria, F. Baldini, S. Berneschi, F. Cosi, A. Giannetti, G. Nunzi Conti, S. Pelli, G.C. Righini, Opt. Express 17, 14694 (2009)CrossRefADSGoogle Scholar
  2. 2.
    F. Vollmer, S. Arnold, Nat. Methods 5, 591 (2008)CrossRefGoogle Scholar
  3. 3.
    A.M. Armani, R.P. Kulkarni, S.E. Fraser, R.C. Flagan, K.J. Vahala, Science 317, 783 (2007)CrossRefADSGoogle Scholar
  4. 4.
    K. Schmitt, K. Oehse, G. Sulz, C. Hoffmann, Sensors 8, 711 (2008)CrossRefGoogle Scholar
  5. 5.
    I. Teraoka, S. Arnold, J. Opt. Soc. Am. B 23, 1434 (2006)CrossRefADSGoogle Scholar
  6. 6.
    O. Gaathon, J. Culic-Viskota, M. Mihnev, I. Teraoka, S. Arnold, Appl. Phys. Lett. 89, 223901 (2006)CrossRefADSGoogle Scholar
  7. 7.
    N. Lin, L. Jiang, S. Wang, Q. Chen, H. Xiao, Y. Lu, H. Tsai, Appl. Opt. 50, 5465 (2011)CrossRefADSGoogle Scholar
  8. 8.
    P.K. Tien, R. Ulrich, J. Opt. Soc. Am. 60, 1325 (1970)CrossRefADSGoogle Scholar
  9. 9.
    D. Ristić, A. Rasoloniaina, A. Chiappini, P. Féron, S. Pelli, G. Nunzi Conti, M. Ivanda, G.C. Righini, G. Cibiel, M. Ferrari, Opt. Express 21, 20954 (2013)CrossRefGoogle Scholar
  10. 10.
    A.L. Aden, M. Kerker, J. Appl. Phys. 22, 1242 (1951)MathSciNetCrossRefzbMATHADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • D. Ristić
    • 1
  • A. Chiappini
    • 2
  • M. Mazzola
    • 2
  • D. Farnesi
    • 3
  • G. Nunzi-Conti
    • 3
  • G.C. Righini
    • 4
  • P. Féron
    • 5
  • G. Cibiel
    • 6
  • M. Ferrari
    • 2
  • M. Ivanda
    • 1
  1. 1.Institut Ruđer BoškovićZagrebCroatia
  2. 2.IFN — CNR CSMFO Lab.TrentoItaly
  3. 3.IFAC — CNR, MDF Lab.Sesto FiorentinoItaly
  4. 4.Enrico Fermi CentreRomaItaly
  5. 5.FOTON-Systèmes Photoniques (CNRS-UMR 6082), ENSSATLannion CedexFrance
  6. 6.Centre National d’Etudes Spatiales (CNES)Toulouse Cedex 9France

Personalised recommendations