The European Physical Journal Special Topics

, Volume 223, Issue 10, pp 1937–1947 | Cite as

Opto-acoustic sensing of fluids and bioparticles with optomechanofluidic resonators

Regular Article Hollow Core Resonators
Part of the following topical collections:
  1. Taking Detection to the Limit: Biosensing with Optical Microcavities

Abstract

Opto-mechano-fluidic resonators (OMFRs) are a unique optofluidics platform that can measure the acoustic properties of fluids and bioanalytes in a fully-contained microfluidic system. By confining light in ultra-high-Q whispering gallery modes of OMFRs, optical forces such as radiation pressure and electrostriction can be used to actuate and sense structural mechanical vibrations spanning MHz to GHz frequencies. These vibrations are hybrid fluid-shell modes that entrain any bioanalyte present inside. As a result, bioanalytes can now reflect their acoustic properties on the optomechanical vibrational spectrum of the device, in addition to optical property measurements with existing optofluidics techniques. In this work, we investigate acoustic sensing capabilities of OMFRs using computational eigenfrequency analysis. We analyze the OMFR eigenfrequency sensitivity to bulk fluid-phase materials as well as nanoparticles, and propose methods to extract multiple acoustic parameters from multiple vibrational modes. The new informational degrees-of-freedom provided by such opto-acoustic measurements could lead to surprising new sensor applications in the near future.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Psaltis, S.R. Quake, C. Yang, Nature 442, 381 (2006)CrossRefADSGoogle Scholar
  2. 2.
    X. Fan, I.M. White, Nat. Photon 5, 591 (2011)CrossRefADSGoogle Scholar
  3. 3.
    A.R. Hawkins, H. Schmidt, Handbook of Optofluidics (Boca Raton: CRC Press, 2010)Google Scholar
  4. 4.
    Y. Fainman, L. Lee, D. Psaltis, C. Yang, Optofluidics: Fundamentals, Devices, and Applications (New York: McGraw-Hill, 2010)Google Scholar
  5. 5.
    F. Vollmer, S. Arnold, Nat. Meth. 5, 591 (2008)CrossRefGoogle Scholar
  6. 6.
    X. Fan, I.M. White, S.I. Shopova, H. Zhu, J.D. Suter, Y. Sun, Anal. Chim. Acta 620, 8 (2008)CrossRefGoogle Scholar
  7. 7.
    X. Fan, Advanced Photonic Structures for Biological and Chemical Detection (New York, NY: Springer, 2009)Google Scholar
  8. 8.
    X. Fan, S.-H. Yun, Nat. Meth. 11, 141 (2014)CrossRefGoogle Scholar
  9. 9.
    H. Cho, B. Lee, G.L. Liu, A. Agarwal, L.P. Lee, Lab Chip 9, 3360 (2009)CrossRefGoogle Scholar
  10. 10.
    F. Eftekhari, C. Escobedo, J. Ferreira, X. Duan, E.M. Girotto, A.G. Brolo, et al., Anal. Chem. 81, 4308 (2009)CrossRefGoogle Scholar
  11. 11.
    F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, S. Arnold, Appl. Phys. Lett. 80, 4057 (2002)CrossRefADSGoogle Scholar
  12. 12.
    Y. Sun, X. Fan, Anal. Bioanal. Chem. 399, 205 (2011)CrossRefGoogle Scholar
  13. 13.
    M.S. Luchansky, R.C. Bailey, Anal. Chem. 84, 793 (2012)CrossRefGoogle Scholar
  14. 14.
    I.M. White, H. Oveys, X. Fan, Opt. Lett. 31, 1319 (2006)CrossRefADSGoogle Scholar
  15. 15.
    J. G. Zhu, S.K. Ozdemir, Y.F. Xiao, L. Li, L.N. He, D.R. Chen, et al., Nat. Photon 4, 46 (2010)CrossRefADSGoogle Scholar
  16. 16.
    M. Sumetsky, Y. Dulashko, R.S. Windeler, Opt. Lett. 35, 898 (2010)CrossRefADSGoogle Scholar
  17. 17.
    W. Lee, Y. Luo, Q. Zhu, X. Fan, Opt. Express 19, 19668 (2011)CrossRefADSGoogle Scholar
  18. 18.
    A. Watkins, J. Ward, Y. Wu, S.N. Chormaic, Opt. Lett. 36, 2113 (2011)CrossRefADSGoogle Scholar
  19. 19.
    S.-X. Qian, J.B. Snow, H.-M. Tzeng, R.K. Chang, Science 231, 486 (1986)CrossRefADSGoogle Scholar
  20. 20.
    A. Kiraz, A. Sennaroglu, S. Doganay, M.A. Dundar, A. Kurt, H. Kalaycioglu, et al., Opt. Commun. 276, 145 (2007)CrossRefADSGoogle Scholar
  21. 21.
    M.R. Lee, P.M. Fauchet, Opt. Lett. 32, 3284 (2007)CrossRefADSGoogle Scholar
  22. 22.
    M. Huang, A.A. Yanik, T. Chang, H. Altug, Opt. Express 17, 24224 (2009)CrossRefADSGoogle Scholar
  23. 23.
    D. Yin, J.P. Barber, A.R. Hawkins, H. Schmidt, Appl. Phys. Lett. 87, 211111 (2005)CrossRefADSGoogle Scholar
  24. 24.
    F. Vollmer, S. Arnold, D. Keng, PNAS 105, 20701 (2008)CrossRefADSGoogle Scholar
  25. 25.
    S. Arnold, D. Keng, S.I. Shopova, S. Holler, W. Zurawsky, F. Vollmer, Opt. Express 17, 6230 (2009)CrossRefADSGoogle Scholar
  26. 26.
    Y. Pang, R. Gordon, Nano Lett. 11, 3763 (2011)CrossRefADSGoogle Scholar
  27. 27.
    S. Kuhn, P. Measor, E.J. Lunt, B.S. Phillips, D.W. Deamer, A.R. Hawkins, et al., Lab Chip 9, 2212 (2009)CrossRefGoogle Scholar
  28. 28.
    A.H.J. Yang, S.D. Moore, B.S. Schmidt, M. Klug, M. Lipson, D. Erickson, Nature 457, 71 (2009)CrossRefADSGoogle Scholar
  29. 29.
    G.L. Liu, J. Kim, Y. Lu, L.P. Lee, Nature Mater. 5, 27 (2006)CrossRefADSGoogle Scholar
  30. 30.
    F.M. Weinert, D. Brauna, J. Appl. Phys. 104, 104701 (2008)CrossRefADSGoogle Scholar
  31. 31.
    J.L. Arlett, M.L. Roukes, J. Appl. Phys. 108, 084701 (2010)CrossRefADSGoogle Scholar
  32. 32.
    T.P. Burg, M. Godin, S.M. Knudsen, W. Shen, G. Carlson, J.S. Foster, et al., Nature 446, 1066 (2007)CrossRefADSGoogle Scholar
  33. 33.
    S. Olcum, N. Cermark, S.C. Wasserman, K.S. Christine, H. Atsumi, K.R. Payer, et al., Proc. Natl. Acad. Sci. 111, 1310 (2014)CrossRefADSGoogle Scholar
  34. 34.
    S. Son, Tzur, Y. Weng, P. Jorgensen, J. Kim, M.W. Kirschner, et al., Nat. Meth. 9, 910 (2012)CrossRefGoogle Scholar
  35. 35.
    F. Feijo Delgado, N. Cermark, V.C. Hecht, S. Son, Y. Li, S.M. Knudsen, et al., PLoS ONE 8, e67590 (2013)CrossRefADSGoogle Scholar
  36. 36.
    C.J. Montrose, V.A. Solovyev, T.A. Litovitz, J. Acoust. Soc. Am. 43, 117 (1968)CrossRefADSGoogle Scholar
  37. 37.
    D.A. Pinnow, S.J. Candau, J.T. LaMacchia, T.A. Litovitz, J. Acoust. Soc. Am. 43, 131 (1968)CrossRefADSGoogle Scholar
  38. 38.
    S.A. Lee, S.M. Lindsay, J.W. Powell, T. Weidlich, N.J. Tao, G.D. Lewen, et al., Biopolymers 26, 1637 (1987)CrossRefGoogle Scholar
  39. 39.
    W. Cheng, J. Wang, U. Jonas, G. Fytas, N. Stefanou, Nat. Mater. 5, 830 (2006)CrossRefADSGoogle Scholar
  40. 40.
    G. Scarcelli, S.H. Yun, Nat. Photonics 2, 39 (2007)CrossRefADSGoogle Scholar
  41. 41.
    T. Carmon, H. Rokhsari, L. Yang, T. Kippenberg, K.J. Vahala, Phys. Rev. Lett. 94, 223902 (2005)CrossRefADSGoogle Scholar
  42. 42.
    T.J. Kippenberg, H. Rokhsari, T. Carmon, A. Scherer, K.J. Vahala, Phys. Rev. Lett. 95, 033901 (2005)CrossRefADSGoogle Scholar
  43. 43.
    H. Rokhsari, T. Kippenberg, T. Carmon, K.J. Vahala, Opt. Express 13 (2005)Google Scholar
  44. 44.
    G. Bahl, K.H. Kim, W. Lee, J. Lee, X. Fan, T. Carmon, Nat. Commun. 4, 1994 (2013)CrossRefADSGoogle Scholar
  45. 45.
    K.H. Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, et al., Light Sci. Appl. 2, e110 (2013)CrossRefGoogle Scholar
  46. 46.
    M. Tomes, T. Carmon, Phys. Rev. Lett. 106 (2009)Google Scholar
  47. 47.
    A.A. Savchenkov, A.B. Matsko, D. Strekalov, M. Mohageg, V.S. Ilchenko, L. Maleki, Phys. Rev. Lett. 93, 243905 (2004)CrossRefADSGoogle Scholar
  48. 48.
    G. Bahl, M. Zehnpfenning, M. Tomes, T. Carmon, Nat. Commun. 2, 403 (2011)CrossRefADSGoogle Scholar
  49. 49.
    K. Han, K. Zhu, G. Bahl, Appl. Phys. Lett. 105, 014103 (2014)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  1. 1.Department of Mechanical Science and EngineeringThe University of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.Department of Biomedical EngineeringUniversity of MichiganAnn ArborUSA
  3. 3.Mechanical EngineeringTechnion — Israel Institute of Technology, Technion CityHaifaIsrael

Personalised recommendations