Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 9, pp 1869–1882 | Cite as

Dielectrophoresis in particle confinement: Aligned carbon particles in polymer matrix below percolation threshold

  • M. Knaapila
  • H. Høyer
  • G. Helgesen
Review
Part of the following topical collections:
  1. Soft Matter in Confinement: Systems from Biology to Physics

Abstract

We review preparation and properties of confined, aligned string-like particle assemblies formed by dielectrophoresis under alternating electric fields. Particular attention is placed on carbon particles aligned in the oligomer matrix. In these systems the particle fraction is low, below the isotropic percolation threshold. The matrix is polymerized after alignment, which locks the aligned strings in place. Application examples are discussed including particle separation, conductivity enhancement and piezoresistive sensors.

Keywords

Carbon Black European Physical Journal Special Topic Percolation Threshold Particle Fraction Carbon Black Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Binder, J. Horbach, R. Vink, A. De Virgilis, Soft Matter 4, 1555 (2008)CrossRefADSGoogle Scholar
  2. 2.
    T. Schilling, S. Dorosz, M. Radu, M. Mathew, S. Jungblut, K. Binder, Eur. Phys. J. Special Topics 222, 3039 (2013)CrossRefADSGoogle Scholar
  3. 3.
    H. Löwen, Eur. Phys. J. Special Topics 222, 2727 (2013)CrossRefADSGoogle Scholar
  4. 4.
    A.B.G.M. Leferink op Reinink, E. van den Pol, A.V. Petukhov, G.J. Vroege, H.N.W. Lekkerkerker, Eur. Phys. J. Special Topics 222, 3053 (2013)CrossRefADSGoogle Scholar
  5. 5.
    M. Moniruzzaman, K.I. Winey, Macromolecules 39, 5194 (2006)CrossRefADSGoogle Scholar
  6. 6.
    S.V. Ahir, Y.Y. Huang, E.M. Terentjev, Polymer 49, 3841 (2008)CrossRefGoogle Scholar
  7. 7.
    J.E. Martin, R.A. Anderson, J. Odinek, D. Adolf, J. Williamson, Phys. Rev. B 67, 094207 (2003)CrossRefADSGoogle Scholar
  8. 8.
    G. Filipcsei, I. Csetneki, A. Szilagyi, M. Zrinyi, Adv. Polym. Sci. 206, 137 (2007)CrossRefGoogle Scholar
  9. 9.
    P.W. Majewski, M. Gopinadhan, C.O. Osuji, J. Polym. Sci. B.: Polym. Phys. 50, 2 (2012)CrossRefADSGoogle Scholar
  10. 10.
    M. Knaapila, H. Høyer, J. Kjelstrup-Hansen, G. Helgesen, ACS Appl. Mater. Interf. 6, 3469 (2014)CrossRefGoogle Scholar
  11. 11.
    H. Wang, Z. Xu, G. Eres, Appl. Phys. Lett. 88, 213111 (2006)CrossRefADSGoogle Scholar
  12. 12.
    K. Mizuno, J. Ishii, H. Kishida, Y. Hayamizu, S. Yasuda, D.N. Futaba, M. Yumura, K. Hata, Proc. Natl. Acad. Sci. 106, 6044 (2009)CrossRefADSGoogle Scholar
  13. 13.
    X.Y. Zhang, L.D. Zhang, M.J. Zheng, G.H. Li, L.X. Zhao, J. Cryst. Growth 223, 306 (2001)CrossRefADSGoogle Scholar
  14. 14.
    J. Kjelstrup-Hansen, S. Dohn, D.N. Madsen, K. Mølhave, P. Bøggild, J. Nanosci. Nanotechnol. 6, 1995 (2006)CrossRefGoogle Scholar
  15. 15.
    L. Ci, J. Suhr, V. Pushparaj, X. Zhang, P.M. Ajayan, Nano Lett. 8, 2762 (2008)CrossRefADSGoogle Scholar
  16. 16.
    S. Abbasi, P.J. Carreau, A. Derdouri, Polymer 51, 922 (2010)CrossRefGoogle Scholar
  17. 17.
    K. Tsuda, Y. Sakka, Sci. Technol. Adv. Mater. 10, 014603 (2009)CrossRefGoogle Scholar
  18. 18.
    G. Scalia, Chem. Phys. Chem. 11, 333 (2010)Google Scholar
  19. 19.
    M.S. Mauter, M. Elimelech, C.O. Osuji, ACS Nano 4, 6651 (2010)CrossRefGoogle Scholar
  20. 20.
    A. Shiota, C.K. Ober, Macromolecules 30, 4278 (1997)CrossRefADSGoogle Scholar
  21. 21.
    P. Mansky, J. DeRouchey, T.P. Russell, J. Mays, M. Pitsikalis, T. Morkved, H. Jaeger, Macromolecules 31, 4399 (1998)CrossRefADSGoogle Scholar
  22. 22.
    Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, S. Ramakrishna, Compos. Sci. Technol. 63, 2223 (2003)CrossRefGoogle Scholar
  23. 23.
    H.A. Pohl, J. Appl. Phys. 22, 869 (1951)CrossRefADSGoogle Scholar
  24. 24.
    R. Pethig, Biomicrofluidics 4, 022811 (2010)CrossRefGoogle Scholar
  25. 25.
    M.P. Hughes, R. Pethig, X.-B. Wang, J. Phys. D: Appl. Phys. 29, 474 (1996)CrossRefADSGoogle Scholar
  26. 26.
    B.D. Smith, T.S. Mayer, C.D. Keating, Annu. Rev. Phys. Chem. 63, 241 (2012)CrossRefADSzbMATHGoogle Scholar
  27. 27.
    S.O. Lumsdon, D.M. Scott, Langmuir 21, 4874 (2005)CrossRefGoogle Scholar
  28. 28.
    P.A. Smith, C.D. Nordquist, T.N. Jackson, T.S. Mayer, B.R. Martin, J. Mbindyo, T.E. Mallouk, Appl. Phys. Lett. 77, 1399 (2000)CrossRefADSGoogle Scholar
  29. 29.
    K.D. Hermanson, S.O. Lumsdon, J.P. Williams, E.W. Kaler, O.D. Velev, Science 294, 1082 (2001)CrossRefADSGoogle Scholar
  30. 30.
    A. Nocke, M. Wolf, H. Budzier, K.-F. Arndt, G. Gerlach, Sens. Actuators A 156, 164 (2009)CrossRefGoogle Scholar
  31. 31.
    G.K. Johnsen, M. Knaapila, O.G. Martinsen, G. Helgesen, Compos. Sci. Technol. 72, 1841 (2012)CrossRefGoogle Scholar
  32. 32.
    B. Zhang, C. Xie, J. Hu, H. Wang, Y. Gui, Compos. Sci. Technol. 66, 1558 (2006)CrossRefGoogle Scholar
  33. 33.
    H. Bruus, Theoretical Microfluidics (Oxford University Press, Oxford, 2007)Google Scholar
  34. 34.
    T. Prasse, L. Flandin, K. Schulte, W. Bauhofer, Appl. Phys. Lett. 72, 2903 (1998)CrossRefADSGoogle Scholar
  35. 35.
    M.-K. Schwarz, W. Bauhofer, K. Schulte, Polymer 43, 3079 (2002)CrossRefGoogle Scholar
  36. 36.
    T. Prasse, J.-Y. Cavaillé, W. Bauhofer, Compos. Sci. Technol. 63, 1835 (2003)CrossRefGoogle Scholar
  37. 37.
    X.Q. Chen, T. Saito, H. Yamada, K. Matsushige, Appl. Phys. Lett. 78, 3714 (2001)CrossRefADSGoogle Scholar
  38. 38.
    C. Park, J. Wilkinson, S. Banda, Z. Ounaies, K.E. Wise, G. Sauti, P.T. Lillehei, J.S. Harrison, J. Polym. Sci. B.: Polym. Phys. 44, 1751 (2006)CrossRefADSGoogle Scholar
  39. 39.
    M.-W. Wang, T.-C. Hsu, C.-H. Weng, Eur. Phys. J. Appl. Phys. 42, 241 (2008)CrossRefADSzbMATHGoogle Scholar
  40. 40.
    A.I. Oliva-Avilés, F. Avilés, V. Sosa, A.I. Oliva, F. Gamboa, Nanotechnology 23, 465710 (2012)CrossRefGoogle Scholar
  41. 41.
    A.I. Oliva-Avilés, F. Avilés, G.D. Seidel, V. Sosa, Compos. B Eng. 47, 200 (2013)CrossRefGoogle Scholar
  42. 42.
    H. Wang, H. Zhang, W. Zhao, W. Zhang, G. Chen, Compos. Sci. Technol. 68, 238 (2008)CrossRefGoogle Scholar
  43. 43.
    E. Svåsand, G. Helgesen, A.T. Skjeltorp, Colloids Surf. A: Physicochem. Eng. Aspects 308, 67 (2007)CrossRefGoogle Scholar
  44. 44.
    M. Knaapila, H. Høyer, E. Svåsand, M. Buchanan, A.T. Skjeltorp, G. Helgesen, J. Polym. Sci. B.: Polym. Phys. 49, 399 (2011)CrossRefADSGoogle Scholar
  45. 45.
    M. Knaapila, O.T. Rømoen, E. Svåsand, J.P. Pinheiro, Ø. G. Martinsen, M. Buchanan, A.T. Skjeltorp, G. Helgesen, ACS Appl. Mater. Interfaces 3, 378 (2011)CrossRefGoogle Scholar
  46. 46.
    M. Knaapila, J.P. Pinheiro, M. Buchanan, A.T. Skjeltorp, G. Helgesen, Carbon 49, 3171 (2011)CrossRefGoogle Scholar
  47. 47.
    A. Krishnan, E. Dujardin, M.M.J. Treacy, J. Hugdahl, S. Lynum, T.W. Ebbesen, Nature 388, 451 (1997)CrossRefADSGoogle Scholar
  48. 48.
    S.P. Jordan, V.H. Crespi, Phys. Rev. Lett. 93, 255504 (2004)CrossRefADSGoogle Scholar
  49. 49.
    S.N. Naess, A. Elgsaeter, G. Helgesen, K.D. Knudsen, Sci. Technol. Adv. Mater. 10, 065002 (2009)CrossRefGoogle Scholar
  50. 50.
    F.S. Hage, Q.M. Ramasse, D.M. Kepaptsoglou, O. Prytz, A.E. Gunnaes, G. Helgesen, R. Brydson, Phys. Rev. B 88, 155408 (2013)CrossRefADSGoogle Scholar
  51. 51.
    Y.R. Hernandez, A. Gryson, F.M. Blighe, M. Cadek, V. Nicolosi, W.J. Blau, Y.K. Gun’ko, J.N. Coleman, Scripta Mater. 58, 69 (2008)CrossRefGoogle Scholar
  52. 52.
    R.P. Slopek, J.F. Gilchrist, J. Phys. D: Appl. Phys. 43, 045402 (2010)CrossRefADSGoogle Scholar
  53. 53.
    C-S. Lim, A.J. Rodriques, M.E. Guzman, J.D. Schaefer, B. Minaie, Carbon 49, 1873 (2011)CrossRefGoogle Scholar
  54. 54.
    M. Dimaki, P. Bøggild, Nanotechnology 16, 759 (2005)CrossRefADSGoogle Scholar
  55. 55.
    B.R. Burg, V. Bianco, J. Schneider, D. Poulikakos, J. Appl. Phys. 107, 124308 (2010)CrossRefADSGoogle Scholar
  56. 56.
    H. Høyer, M. Knaapila, J. Kjelstrup-Hansen, X. Liu, G. Helgesen, J. Polym. Sci. B.: Polym. Phys. 50, 477 (2012)CrossRefADSGoogle Scholar
  57. 57.
    M.U. Sandsaunet, M. Knaapila, L. Tavares, J. Kjelstrup-Hansen, G. Helgesen, Polym. Compos., doi: 10.10002/pc.23094 (2014)
  58. 58.
    H. Høyer, M. Knaapila, J. Kjelstrup-Hansen, G. Helgesen, J. Appl. Phys. 112, 094324 (2012)CrossRefADSGoogle Scholar
  59. 59.
    A. Sharma, C.E. Bakis, K.W. Wang, Nanotechnology 19, 325606 (2008)CrossRefADSGoogle Scholar
  60. 60.
    A. Sharma, C.E. Bakis, K.W. Wang, J. Phys. D: Appl. Phys. 43, 175402 (2010)CrossRefADSGoogle Scholar
  61. 61.
    R. Krupke, F. Hennrich, H. von Löhneysen, M.M. Kappes, Science 301, 344 (2003)CrossRefADSGoogle Scholar
  62. 62.
    B.R. Burg, J. Schneider, V. Bianco, N.C. Schirmer, D. Poulikakos, Langmuir 26, 10419 (2010)CrossRefGoogle Scholar
  63. 63.
    M. Dimaki, P. Bøggild, Nanotechnology 15, 1095 (2004)CrossRefADSGoogle Scholar
  64. 64.
    F. Carmona, Physica A 157, 461 (1989)CrossRefADSGoogle Scholar
  65. 65.
    F. Lux, J. Mater. Sci. 28, 285 (1993)CrossRefADSGoogle Scholar
  66. 66.
    D.S. McLachlan, C. Chiteme, C. Park, K.E. Wise, S.E. Lowther, P.T. Lillehei, E.J. Siochi, J.S. Harrison, J. Polym. Sci. Part B: Polym. Phys. 43, 3273 (2005)CrossRefADSGoogle Scholar
  67. 67.
    J. Sánchez-González, A. Macías-García, M.F. Alexandre-Franco, V. Gómez-Serrano, Carbon 43, 741 (2005)CrossRefGoogle Scholar
  68. 68.
    D. Untereker, S. Lyu, J. Schley, G. Martinez, L. Lohstreter, ACS Appl. Mater. Interf. 1, 97 (2009)CrossRefGoogle Scholar
  69. 69.
    S. Kirkpatrick, Rev. Mod. Phys. 45, 574 (1973)CrossRefADSGoogle Scholar
  70. 70.
    F. Du, J.E. Fischer, K.I. Winey, Phys. Rev. B 72, 121404 (2005)CrossRefADSGoogle Scholar
  71. 71.
    A. Behnam, J. Guo, A. Ural, J. App. Phys. 102, 044313 (2007)CrossRefADSGoogle Scholar
  72. 72.
    S.I. White, B.A. DiDonna, M. Mu, T.C. Lubensky, K.I. Winey, Phys. Rev. B 79, 024301 (2009)CrossRefADSGoogle Scholar
  73. 73.
    S.S. Rahatekar, M.S.P. Shaffer, J.A. Elliott, Compos. Sci. Technol. 70, 356 (2010)CrossRefGoogle Scholar
  74. 74.
    R. Schueler, J. Petermann, K. Schulte, H.-P. Wentzel, J. Appl. Polym. Sci. 63, 1741 (1997)CrossRefGoogle Scholar
  75. 75.
    X. Li, S.Y. Wong, W.C. Tjiu, B.P. Lyons, S.A. Oh, C. Bin He, Carbon 46, 829 (2008)CrossRefzbMATHGoogle Scholar
  76. 76.
    L. Flandin, T. Prasse, R. Schueler, K. Schulte, W. Bauhofer, J.-Y. Cavaille, Phys. Rev. B 59, 14349 (1999)CrossRefADSGoogle Scholar
  77. 77.
    A. Boisen, S. Dohn, S.S. Keller, S. Schmid, M. Tenje, Rep. Prog. Phys. 74, 036101 (2011)CrossRefADSGoogle Scholar
  78. 78.
    N. Hu, Y. Karube, M. Arai, T. Watanabe, C. Yan, Y. Li, Y. Liu, H. Fukunaga, Carbon 48, 680 (2010)CrossRefGoogle Scholar
  79. 79.
    A.I. Oliva-Avilés, F. Avilés, V. Sosa, Carbon 49, 2989 (2011)CrossRefGoogle Scholar
  80. 80.
    H. Høyer, M. Knaapila, J. Kjelstrup-Hansen, X. Liu, G. Helgesen, Appl. Phys. Lett. 99, 213106 (2011)CrossRefADSGoogle Scholar
  81. 81.
    L. Gammelgaard, P.A. Rasmussen, M. Calleja, P. Vettiger, A. Boisen, Appl. Phys. Lett. 88, 113508 (2006)CrossRefADSGoogle Scholar
  82. 82.
    B.R. Burg, T. Helbling, C. Hierold, D. Poulikakos, J. App. Phys. 109, 064310 (2011)CrossRefADSGoogle Scholar
  83. 83.
    L. Flandin, A. Chang, S. Nazarenko, A. Hiltner, E. Baer, J. Appl. Polym. Sci. 76, 894 (2000)CrossRefGoogle Scholar
  84. 84.
    M. Li, W.H. Li, J. Zhang, G. Alici, W. Wen, J. Phys. D: Appl. Phys. 47, 063001 (2014)CrossRefADSGoogle Scholar
  85. 85.
    T. An, K.S. Kim, S.K. Hahn, G. Lim, Lab. Chip 10, 2052 (2010)CrossRefGoogle Scholar
  86. 86.
    C.E. Kehayias, S. MacNaughton, S. Sonkusale, C. Staii, Nanotechnology 24, 245502 (2013)CrossRefADSGoogle Scholar
  87. 87.
    J.E. Martin, G. Gulley, J. Appl. Phys. 106, 084301 (2009)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  1. 1.Physics DepartmentInstitute for Energy TechnologyKjellerNorway
  2. 2.Department of PhysicsUniversity of OsloOsloNorway

Personalised recommendations