The European Physical Journal Special Topics

, Volume 223, Issue 9, pp 1813–1829 | Cite as

Pore dynamics in lipid membranes

  • I. Gozen
  • P. Dommersnes
Regular Article
Part of the following topical collections:
  1. Soft Matter in Confinement: Systems from Biology to Physics

Abstract

Transient circular pores can open in plasma membrane of cells due to mechanical stress, and failure to repair such pores lead to cell death. Similar pores in the form of defects also exist among smectic membranes, such as in myelin sheaths or mitochondrial membranes. The formation and growth of membrane defects are associated with diseases, for example multiple sclerosis. A deeper understanding of membrane pore dynamics can provide a more refined picture of membrane integrity-related disease development, and possibly also treatment options and strategies. Pore dynamics is also of great importance regarding healthcare applications such as drug delivery, gene or as recently been implied, cancer therapy. The dynamics of pores significantly differ in stacks which are confined in 2D compared to those in cells or vesicles. In this short review, we will summarize the dynamics of different types of pores that can be observed in biological membranes, which include circular transient, fusion and hemi-fusion pores. We will dedicate a section to floral and fractal pores which were discovered a few years ago and have highly peculiar characteristics. Finally, we will discuss the repair mechanisms of large area pores in conjunction with the current cell membrane repair hypotheses.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.L. Buraud, O. Noël, D. Ausserré, Langmuir 29, 8944 (2013)CrossRefGoogle Scholar
  2. 2.
    M. Bally, et al., Ang. Chem. – Int. Ed. 51, 12020 (2012)CrossRefGoogle Scholar
  3. 3.
    M.M. Lozano, et al., J. Amer. Chem. Soc. 135, 5620 (2013)CrossRefGoogle Scholar
  4. 4.
    B. Ugarte-Uribe, Biochim. Biophys. Acta – General Subj. 1830, 4872 (2013)CrossRefGoogle Scholar
  5. 5.
    A. Makky, et al., Biochim. Biophys. Acta – Biomembr. 1808, 656 (2011)CrossRefGoogle Scholar
  6. 6.
    I. Czolkos, A. Jesorka, O. Orwar, Soft Matter 7, 4562 (2011)CrossRefADSGoogle Scholar
  7. 7.
    I. Gözen, A. Jesorka, Anal. Chem. 84, 822 (2012)CrossRefGoogle Scholar
  8. 8.
    P.L. McNeil, R.A. Steinhardt, J. Cell Biol. 137, 1 (1997)CrossRefGoogle Scholar
  9. 9.
    P.L. McNeil, T. Kirchhausen, Nat. Rev. Molec. Cell Biol. 6, 499 (2005)CrossRefGoogle Scholar
  10. 10.
    I. Gozen, et al., Soft Matter 8, 6220 (2012)CrossRefADSGoogle Scholar
  11. 11.
    J. Rosenbluth, et al., GLIA. 54, 172 (2006)CrossRefGoogle Scholar
  12. 12.
    K.N. Papanicolaou, M.M. Phillippo, K. Walsh, Amer. J. Physiol. – Heart Circ. Physiol. 303, 243 (2012)CrossRefGoogle Scholar
  13. 13.
    I.W. Mattaj, Nat. Rev. Molec. Cell Biol. 5, 65 (2004)CrossRefGoogle Scholar
  14. 14.
    Y. Tamura, K. Itoh, H. Sesaki, Cell. 145, 1158 (2011)CrossRefGoogle Scholar
  15. 15.
    M.P. Maddugoda, et al., Cell Host Microb. 10, 464 (2011)CrossRefGoogle Scholar
  16. 16.
    I. Gözen, et al., Nat. Mater. 9, 908 (2010)CrossRefADSGoogle Scholar
  17. 17.
    A. Schroeder, J. Kost, Y. Barenholz, Chem. Phys. Lipids 162, 1 (2009)CrossRefGoogle Scholar
  18. 18.
    J.M. Escoffre, et al., Molec. Biotechnol. 41, 286 (2009)CrossRefGoogle Scholar
  19. 19.
    D. Wijesinghe, et al., Scientific Reports, 3 (2013)Google Scholar
  20. 20.
    C.L. Woldringh, BBA Sect. Nucl. Acids Protein Synth. 224, 288 (1970)CrossRefGoogle Scholar
  21. 21.
    M. Bischofberger, M.R. Gonzalez, F.G. van der Goot, Curr. Opinion Cell Biol. 21, 589 (2009)Google Scholar
  22. 22.
    A. Chanturiya, et al., Biophys. J. 84, 1750 (2003)CrossRefADSGoogle Scholar
  23. 23.
    C.G. Cranfield, et al., Biophys. J. 106, 182 (2014)CrossRefADSGoogle Scholar
  24. 24.
    A.G. Pakhomov, et al., Biochem. Biophys. Res. Commun. 385, 181 (2009)CrossRefGoogle Scholar
  25. 25.
    R. Reigada, Biochim. Biophys. Acta – Biomembr. 1838, 814 (2014)CrossRefGoogle Scholar
  26. 26.
    Y. Levin, M.A. Idiart, Phys. a-Stat. Mech. Appl. 331, 571 (2004)CrossRefGoogle Scholar
  27. 27.
    O. Sandre, L. Moreaux, F. Brochard-Wyart, Proc. Nat. Acad. Sci. United States of America 96, 10591 (1999)CrossRefADSGoogle Scholar
  28. 28.
    E. Karatekin, et al., Biophys. J. 84, 1734 (2003)CrossRefADSGoogle Scholar
  29. 29.
    E. Karatekin, O. Sandre, F. Brochard-Wyart, Polymer Int. 52, 486 (2003)CrossRefGoogle Scholar
  30. 30.
    R.J. Ryham, F.S. Cohen, R. Eisenberg, Comm. Math. Sci. 10, 1273 (2012)CrossRefMathSciNetMATHGoogle Scholar
  31. 31.
    F. Brochard-Wyart, P.G. De Gennes, O. Sandre, Phys. A: Stat. Mech. Appl. 278, 32 (2000)CrossRefGoogle Scholar
  32. 32.
    V. Levadny, et al., Langmuir 29, 3848 (2013)CrossRefGoogle Scholar
  33. 33.
    R.M. Hochmuth, J. Biomech. 33, 15 (2000)CrossRefGoogle Scholar
  34. 34.
    Y. Sakuma, T. Taniguchi, M. Imai, Biophys. J. 99, 472 (2010)CrossRefADSGoogle Scholar
  35. 35.
    L.G. Wu, et al., Ann. Rev. Physiol. 76, 301 (2014)CrossRefGoogle Scholar
  36. 36.
    E. Karatekin, J.E. Rothman, Nat. Protocols 7, 903 (2012)CrossRefGoogle Scholar
  37. 37.
    L.J. Mellander, et al., Scientific Reports, 4 (2014)Google Scholar
  38. 38.
    Y. Kozlovsky, L.V. Chernomordik, M.M. Kozlov, Biophys. J. 83, 2634 (2002)CrossRefADSGoogle Scholar
  39. 39.
    J. Leng, F. Nallet, D. Roux, Eur. Phys. J. E. 4, 77 (2001)CrossRefGoogle Scholar
  40. 40.
    C. Billerit, et al., Soft Matter 7, 9751 (2011)CrossRefADSGoogle Scholar
  41. 41.
    L. Soubiran, et al., Europhys. Lett. 31, 243 (1995)CrossRefADSGoogle Scholar
  42. 42.
    J.C. Shillcock, R. Lipowsky, Nat. Mater. 4, 225 (2005)CrossRefADSGoogle Scholar
  43. 43.
    W.F.D. Bennett, N. Sapay, D.P. Tieleman, Biophys. J. 106, 210 (2014)CrossRefADSGoogle Scholar
  44. 44.
    M. Schick, K. Katsov, M. Muller, Mol. Phys. 103, 3055 (2005)CrossRefADSGoogle Scholar
  45. 45.
    X. Banquy, et al., Biochim. Biophys. Acta – Biomembr. 1818, 402 (2012)CrossRefGoogle Scholar
  46. 46.
    O. Regev, R. Backov, C. Faure, Chem. Mater. 16, 5280 (2004)CrossRefGoogle Scholar
  47. 47.
    E. Evans, E. Sackmann, J. Fluid Mech. 194, 553 (1988)CrossRefADSMATHGoogle Scholar
  48. 48.
    L. Durlofsky, J.F. Brady, Phys. Fluids 30, 3329 (1987)Google Scholar
  49. 49.
    J. Nissen, et al., Eur. Phys. J. B. 10, 335 (1999)CrossRefADSGoogle Scholar
  50. 50.
    E.A. Evans, R.M. Hochmuth, Biophys. J. 16, 1 (1976)CrossRefGoogle Scholar
  51. 51.
    T. Lobovkina, et al., Soft Matter 6, 268 (2010)CrossRefADSGoogle Scholar
  52. 52.
    Y.A. Chizmadzhev, et al., Biophys. J. 78, 2241 (2000)CrossRefADSGoogle Scholar
  53. 53.
    G.H. Zan, et al., Soft Matter 8, 10877 (2012)CrossRefADSGoogle Scholar
  54. 54.
    A. Kunze, S. Svedhem, B. Kasemo, Langmuir 25, 5146 (2009)CrossRefGoogle Scholar
  55. 55.
    F.S. Cohen, G.B. Melikyan, J. Membr. Biol. 199, 1 (2004)CrossRefGoogle Scholar
  56. 56.
    M. Nishizawa, K. Nishizawa, Biophys. J. 104, 1038 (2013)CrossRefADSGoogle Scholar
  57. 57.
    I. Gözen, et al., Lab. Chip. 13, 3822 (2013)CrossRefGoogle Scholar
  58. 58.
    I. Gözen, et al., Soft Matter 9, 2787 (2013)CrossRefADSGoogle Scholar
  59. 59.
    R.A. Oeckler, et al., Amer. J. Physiol. – Lung Cellu. Molec. Physiol. 299, L826 (2010)CrossRefGoogle Scholar
  60. 60.
    K. Akashi, et al., Biophys. J. 74, 2973 (1998)CrossRefADSGoogle Scholar
  61. 61.
    G.M. Homsy, Ann. Rev. Fluid Mech. 19, 271 (1987)CrossRefADSGoogle Scholar
  62. 62.
    B. Sandnes, et al., Nat. Comm., 2 (2011)Google Scholar
  63. 63.
    P.G. Saffman, G. Taylor, Proc. Royal Soc. London Ser. a-Math. Phys. Sci. 245, 312 (1958)Google Scholar
  64. 64.
    P. McAkin, et al., Marine Petrol. Geol. 17, 777 (2000)CrossRefGoogle Scholar
  65. 65.
    P. Fast, M.J. Shelley, J. Comput. Phys. 195, 117 (2004)CrossRefADSMathSciNetMATHGoogle Scholar
  66. 66.
    G. Lovoll, et al., Phys. Rev. E, 70 (2004)Google Scholar
  67. 67.
    R. Toussaint, et al., Europhys. Lett. 71, 583 (2005)CrossRefADSGoogle Scholar
  68. 68.
    K.J. Maloy, et al., Phys. Rev. Lett. 68, 2161 (1992)CrossRefADSGoogle Scholar
  69. 69.
    Y. Roiter, et al., Nano Lett. 8, 941 (2008)CrossRefADSGoogle Scholar
  70. 70.
    E. Sharon, et al., Phys. Rev. Lett., 91 (2003)Google Scholar
  71. 71.
    B. Davidovitch, A. Levermann, I. Procaccia, Phys. Rev. E 62, R5919 (2000)CrossRefADSGoogle Scholar
  72. 72.
    C.G. Zervas, S.L. Gregory, N.H. Brown, J. Cell Biol. 152, 1007 (2001)CrossRefGoogle Scholar
  73. 73.
    Y. Kaneko, et al., J. Morphol. 273, 639 (2012)CrossRefGoogle Scholar
  74. 74.
    A.S. Sechi, J. Wehland, J. Cell Sci. 113, 3685 (2000)Google Scholar
  75. 75.
    C.M. Goodloe-Holland, E.J. Luna, J. Cell Biol. 99, 71 (1984)CrossRefGoogle Scholar
  76. 76.
    B.B. Machta, et al., Biophys. J. 100, 1668 (2011)CrossRefADSGoogle Scholar
  77. 77.
    F. Brochard-Wyart, et al., Proc. Nat. Acad. Sci. United States of America 103, 7660 (2006)CrossRefADSGoogle Scholar
  78. 78.
    P.A. Pullarkat, et al., Phys. Rev. Lett. 96, 048104 (2006)CrossRefADSGoogle Scholar
  79. 79.
    S.A. Shkulipa, W.K. Den Otter, W.J. Briels, Phys. Rev. Lett., 96 (2006)Google Scholar
  80. 80.
    I. Czolkos, et al., Nano Lett. 7, 1980 (2007)CrossRefADSGoogle Scholar
  81. 81.
    W.K. Den Otter, S.A. Shkulipa, Biophys. J. 93, 423 (2007)CrossRefADSGoogle Scholar
  82. 82.
    R. Jahn, R.H. Scheller, Nat. Rev. Molec. Cell Biol. 7, 631 (2006)CrossRefGoogle Scholar
  83. 83.
    A. Engel, P. Walter, J. Cell Biol. 183, 181 (2008)CrossRefGoogle Scholar
  84. 84.
    A.M.S. Cardoso, et al., Biochim. Biophys. Acta – Biomembr. 1818, 877 (2012)CrossRefGoogle Scholar
  85. 85.
    P. Martínez, A. Morros, Front. Biosci. J. Virtual Libr. 1, d103 (1996)Google Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • I. Gozen
    • 1
  • P. Dommersnes
    • 2
  1. 1.Division of Biomedical Engineering, Department of Medicine, Brigham and Women’s HospitalHarvard Medical SchoolCambridgeUSA
  2. 2.Matières et Systèmes ComplexesUniversité Paris DiderotParisFrance

Personalised recommendations