Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 9, pp 1771–1785 | Cite as

An introduction to the hydrodynamics of swimming microorganisms

  • J. M. Yeomans
  • D. O. Pushkin
  • H. Shum
Review
Part of the following topical collections:
  1. Soft Matter in Confinement: Systems from Biology to Physics

Abstract

This manuscript is a summary of a set of lectures given at the Geilo School 2013 Soft Matter Confinement: from Biology to Physics. It aims to provide an introduction to the hydrodynamics that underlies the way in which microorganisms, such as bacteria and algae, and fabricated microswimmers, swim. We focus on two features peculiar to bacterial swimming: the Scallop theorem and the dipolar nature of the far flow field. We discuss the consequences of these to the velocity field of a swimmer suspension and to the motion of passive tracers as a bacterium swims past.

Keywords

European Physical Journal Special Topic Soft Matter Tracer Particle Multipole Expansion Swimmer Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Lauga, T.R. Powers, Reports Progr. Phys. 72, 096601 (2009)CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    S.J. Ebbens, J.R. Howse, Soft Matter 6, 726 (2010)CrossRefADSGoogle Scholar
  3. 3.
    J.S. Guasto, R. Rusconi, R. Stocker, Annual Rev. Fluid Mech. 44, 637 (2011)Google Scholar
  4. 4.
    J. Lighthill, Mathematical Biofluiddynamics (Society for Industrial and Applied Mathematics, 1975)Google Scholar
  5. 5.
    G.J. Hancock, Proc. Royal Soc. London Series A 217, 96 (1953)CrossRefADSMathSciNetzbMATHGoogle Scholar
  6. 6.
    J.J.L. Higdon, J. Fluid Mech. 90, 685 (1979)CrossRefADSMathSciNetzbMATHGoogle Scholar
  7. 7.
    J.R. Blake, Proc. Cambridge Philosoph. Soc. 70, 303 (1971)CrossRefADSzbMATHGoogle Scholar
  8. 8.
    G.K. Batchelor, J. Fluid Mech. 44, 419 (1970)CrossRefADSMathSciNetzbMATHGoogle Scholar
  9. 9.
    J. Teran, L. Fauci, M. Shelley, Phys. Rev. Lett. 104, 36 (2010)CrossRefGoogle Scholar
  10. 10.
    R. Dreyfus, J. Baudry, M.L. Roper, M. Fermigier, H.A. Stone, J. Bibette, Nature 437, 862 (2005)CrossRefADSGoogle Scholar
  11. 11.
    L. Zhang, J.J. Abbott, L.X. Dong, B.E. Kratochvil, D. Bell, B.J. Nelson, Applied Phys. Lett. 94, 064107 (2009)CrossRefADSGoogle Scholar
  12. 12.
    M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Rev. Mod. Phys. 85, 1143 (2013)CrossRefADSGoogle Scholar
  13. 13.
    E.A. Gaffney, H. Gadêlha, D.J. Smith, J.R. Blake, J.C. Kirkman-Brown, Ann. Rev. Fluid Mech. 43, 501 (2011)CrossRefADSGoogle Scholar
  14. 14.
    L.D. Landau, E.M. Lifshitz, Fluid mechanics, Course of Theoretical Physics, Vol. 6 (Butterworth-Heinemann, 2000)Google Scholar
  15. 15.
    E. Lauga, Soft Matter 7, 3060 (2011)CrossRefADSGoogle Scholar
  16. 16.
    E.M. Purcell, Amer. J. Phys. 20, 193 (1977)Google Scholar
  17. 17.
    A. Shapere, F. Wilczek, J. Fluid Mech. 198, 557 (1989)CrossRefADSMathSciNetzbMATHGoogle Scholar
  18. 18.
    A. Najafi, R. Golestanian, Phys. Rev. E 69, 062901 (2004)CrossRefADSGoogle Scholar
  19. 19.
    J.E. Avron, O. Kenneth, D.H. Oaknin, New J. Phys. 7, 1329 (1988)Google Scholar
  20. 20.
    M.J. Lighthill, Commun. Pure Appl. Maths 5, 109 (1952)CrossRefMathSciNetzbMATHGoogle Scholar
  21. 21.
    T. Ishikawa, M.P. Simmonds, T.J. Pedley, J. Fluid Mech. 568, 119 (2006)CrossRefADSMathSciNetzbMATHGoogle Scholar
  22. 22.
    V.B. Putz, D. Phil. Thesis: Collective behaviour of model microswimmers (University of Oxford, 2010)Google Scholar
  23. 23.
    J. Dunkel, V.B. Putz, I.M. Zaid, J.M. Yeomans, Soft Matter 6, 4268 (2010)CrossRefADSGoogle Scholar
  24. 24.
    J.R. Blake, J. Fluid Mech. 46, 199 (1971)CrossRefADSzbMATHGoogle Scholar
  25. 25.
    S. Thutupalli, R. Seemann, S. Herminghaus, New J. Phys. 13, 073021 (2011)CrossRefADSGoogle Scholar
  26. 26.
    I. Pagonabarraga, I. Lopis, Soft Matter 9, 7174 (2013)CrossRefADSGoogle Scholar
  27. 27.
    S. Kim, S.J. Karrila, Microhydrodynamics: Principles and Selected Applications (Dover Publications Inc. Mineola, New York, 2005)Google Scholar
  28. 28.
    C. Pozrikidis, Boundary integral and singularity methods for linearized viscous flow (Cambridge University Press, 1992)Google Scholar
  29. 29.
    I.M. Zaid, J. Dunkel, J.M. Yeomans, J. Royal Society Interface 8, 1314 (2011)CrossRefGoogle Scholar
  30. 30.
    K.C. Leptos, J.S. Guasto, J.P. Gollub, A.I. Pesci, R.E. Goldstein, Phys. Rev. Lett. 103, 198103 (2009)CrossRefADSGoogle Scholar
  31. 31.
    I. Rushkin, V. Kantsler, R.E. Goldstein, Phys. Rev. Lett. 105, 188101 (2010)CrossRefADSGoogle Scholar
  32. 32.
    Z. Lin, J.-L. Thiffeault, S. Childress, J. Fluid Mech. 669, 167 (2011)CrossRefADSMathSciNetzbMATHGoogle Scholar
  33. 33.
    D.O. Pushkin, H. Shum, J.M. Yeomans, J. Fluid Mech. 726, 5 (2013)CrossRefADSMathSciNetzbMATHGoogle Scholar
  34. 34.
    P.T. Underhill, J.P. Hernandez-Ortiz, M.D. Graham, Phys. Rev. Lett. 100, 248101 (2008)CrossRefADSGoogle Scholar
  35. 35.
    D.T.N. Chen, A.W.C. Lau, L.A. Hough, M.F. Islam, M. Goulian, T.C. Lubensky, A.G. Yodh, Phys. Rev. Lett. 99, 148302 (2007)CrossRefADSGoogle Scholar
  36. 36.
    C. Darwin, Math. Proc. Cambridge Philosoph. Soc. 49, 342 (1953)CrossRefADSMathSciNetzbMATHGoogle Scholar
  37. 37.
    A.M. Leshansky, L.M. Pismen, Phys. Rev. E 82, 025301 (2010)CrossRefADSGoogle Scholar
  38. 38.
    H. Kurtuldu, J.S. Guasto, K.A. Johnson, J.P. Gollub, PNAS 108, 10391 (2011)CrossRefADSGoogle Scholar
  39. 39.
    R. Golestanian, S. Ramaswamy (eds.), Eur. Phys. J. E 36 (Special Issue, Active Matter, 2013)Google Scholar
  40. 40.
    A.P. Berke, L. Turner, H.C. Berg, E. Lauga, Phys. Rev. Lett. 101, 038102 (2008)CrossRefADSGoogle Scholar
  41. 41.
    K. Drescher, J. Dunkel, L.H. Cisneros, S. Ganguly, R.E. Goldstein, PNAS 108, 10940 (2011)CrossRefGoogle Scholar
  42. 42.
    H.C. Fu, V.B. Shenoy, T.R. Powers, EPL 91, 24002 (2010)CrossRefADSGoogle Scholar
  43. 43.
    R. Ledesma-Aguilar, J.M. Yeomans, Phys. Rev. Lett. 111, 138101 (2013)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  1. 1.Rudolf Peierls Centre for Theoretical PhysicsUniversity of OxfordOxfordUK
  2. 2.Department of Chemical & Petroleum EngineeringUniversity of PittsburghPittsburghUSA

Personalised recommendations