Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 9, pp 1755–1769 | Cite as

Adhesion of giant unilamellar vesicles on double-end grafted DNA carpets

  • Y. Sun
  • C. M. Marques
  • A. P. SchroderEmail author
Regular Article
  • 77 Downloads
Part of the following topical collections:
  1. Soft Matter in Confinement: Systems from Biology to Physics

Abstract

We have recently shown that the bio-mimetic adhesion of Giant Unilamellar Vesicles on carpets of lambda-phage DNAs, grafted by one end to the substrate, leads to DNA scraping and stapling. As the lipid adhesion patch is built, outward forces stretch the DNA, while adhesion patch formation staples the chains into frozen conformations, trapped between the GUV membrane and the substrate. Analysis of the scraped and stapled DNA conformations provides a wealth of information about the membrane/polymer interactions at play during the formation of a bio-adhesive contact zone. In this paper we report new phenomena revealed by scraping and stapling phenomena associated with the bio-mimetic adhesion of Giant Unilamellar Vesicles on carpets of lambda-phage DNAs that were grafted to the substrate by both ends. In particular, the peculiar shapes of stapled DNA observed in this case, suggest that the membrane exerces not only outward radial forces during patch formation, but is is also able to confine the DNA molecules in the orthoradial direction.

Keywords

European Physical Journal Special Topic Threshold Force Giant Unilamellar Vesicle Adhesion Patch Spreading Front 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.-L. Hisette, P. Haddad, T. Gisler, C.M. Marques, A.P. Schroder, Soft Matter 4, 828 (2008)CrossRefADSGoogle Scholar
  2. 2.
    K. Guenther, M. Mertig, R. Seidel, Nucl. Acids Res. 38(19), 6526 (2010)CrossRefGoogle Scholar
  3. 3.
    P.S. Doyle, B. Ladoux, J.-L. Viovy, Phys. Rev. Lett. 84, 4769 (2000)CrossRefADSGoogle Scholar
  4. 4.
    J. Rädler, E. Sackmann, J. Phys. II (France) 3, 727 (1993)CrossRefGoogle Scholar
  5. 5.
    L. Limozin, K. Sengupta, Chem. Phys. Chem. 10(16), 2752 (2009)Google Scholar
  6. 6.
    M.I. Angelova, D.S. Dimitrov, Faraday Disc. Chem. Soc. 81, 303 (1986)CrossRefGoogle Scholar
  7. 7.
    S.B. Smith, Y. Cui, C. Bustamante, Science 271, 795 (1996)CrossRefADSGoogle Scholar
  8. 8.
    J. Pécréaux, H.-G. Döbereiner, J. Prost, J.-F. Joanny, P. Bassereau, Eur. Phys. J. E. 13, 277 (2004)CrossRefGoogle Scholar
  9. 9.
    J.F. Marko, E.D. Siggia, Macromolecules 28(26), 8759 (1995)CrossRefADSGoogle Scholar
  10. 10.
    G. Nam, M.-L. Hisette, Y.L. Sun, T. Gisler, A. Johner, F. Thalmann, A.P. Schroder, C.M. Marques, N.-K. Lee, Phys. Rev. Lett. 105(8), 088101 (2010)CrossRefADSGoogle Scholar
  11. 11.
    N. Kucerka, M.-P. Nieh, J. Katsaras, Bioch. Biophys. Acta. 1808, 2761 (2011)CrossRefGoogle Scholar
  12. 12.
    F. Brochard-Wyart, T. Tanaka, N. Borghi, P.G. de Gennes, Langmuir 21(9), 4144 (2005)CrossRefGoogle Scholar
  13. 13.
    F. Thalmann, V. Billot, C.M. Marques, Phys. Rev. E 83(6), 061922 (2011)CrossRefADSGoogle Scholar
  14. 14.
    Y.-Ch. Su, J.Z.Y. Chen, Soft Matter 9(2), 570 (2013)CrossRefADSGoogle Scholar
  15. 15.
    A. Balducci, P. Mao, J. Han, P.S. Doyle, Macromolecules 39, 6273 (2006)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  1. 1.Institut Charles SadronUniversité de Strasbourg, CNRS UPR22StrasbourgFrance

Personalised recommendations