The European Physical Journal Special Topics

, Volume 223, Issue 9, pp 1745–1754 | Cite as

DNA confinement drives uncoating of the HIV Virus

  • I. RouzinaEmail author
  • R. Bruinsma
Regular Article
Part of the following topical collections:
  1. Soft Matter in Confinement: Systems from Biology to Physics


The enzyme reverse transcriptase converts single-stranded RNA molecules into double-stranded DNA molecules inside mature HIV viral capsids. We present a model for the uncoating of the HIV virus where the capsid uncoating process is driven by the confinement force exerted on the capsid wall porduced to the double-stranded DNA generated by reverse transcriptase.


European Physical Journal Special Topic Minor Radius Major Radius Thin Elastic Shell Mature Capsid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Kindt, S. Tzlil, A. Ben-Shaul, W. Gelbart, Proc. Natl. Acad. Sci. USA 98, 13671 (2001)CrossRefADSGoogle Scholar
  2. 2.
    J. Gopal, S. Hong-Zhou, A. Knobler, W. Gelbart, RNA 18, 284 (2012)CrossRefGoogle Scholar
  3. 3.
    B.K. Ganser, S. Li, V.Y. Klishko, J.T. Finch, W.I. Sundquist, Science 283, 81 (1999)CrossRefADSGoogle Scholar
  4. 4.
    G. Mirambeau, S. Lyonnais, R.J. Gorelick, RNA. Biol. 7, 724 (2010)CrossRefGoogle Scholar
  5. 5.
    KrishnamoorthyG. Krishnamoorthy, B. Roques, J.L. Darlix, Y. Mely, Nucleic Acids Res. 31, 5425 (2003)CrossRefGoogle Scholar
  6. 6.
    A.E. Hulme, O. Perez, T.J. Hope, Proc. Natl. Acad. Sci. USA 108, 9975 (2011)CrossRefADSGoogle Scholar
  7. 7.
    C.A.S.A. Minetti, Proc. Natl. Acad. Sci. USA 25, 14719 (2003)CrossRefADSGoogle Scholar
  8. 8.
    N. Hud, K. Downing, Proc. Natl. Acad. Sci. USA 798, 14925 (2001)CrossRefADSGoogle Scholar
  9. 9.
    V. Bloomfield, Biopolymers 44, 269 (1997)CrossRefGoogle Scholar
  10. 10.
    V.B. Shah, C. Aiken, J. Vis. Exp. 8, 3384 (2011)Google Scholar
  11. 11.
    H. Roos, R. Bruinsma, G. Wuite, Nat. Phys. 6, 733 (2010)CrossRefGoogle Scholar
  12. 12.
    J. Lidmar, L. Mirny, G.D. Nelson, Phys. Rev. E 68, 051910 (2003)CrossRefADSGoogle Scholar
  13. 13.
    T.T. Nguyen, I. Rouzina, B.I. Shklovskii, J. Chem. Phys. 112, 2562 (2000)CrossRefADSGoogle Scholar
  14. 14.
    A. de Marco, A.M. Heuser, B. Glass, H.G. Krusslich, J.A. Briggs, J. Virol. 86, 13708 (2012)CrossRefGoogle Scholar
  15. 15.
    W. Wang, N. Naiyer, M. Mitra, J. Li, M. Williams, I. Rouzina, R. Gorelick, Z. Wu, K. Musier-Forsyth, Nucleic Acids Res. 42, 7145 (2014)CrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  1. 1.Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of Physics and Astronomy; Department of Chemistry and BiochemistryUniversity of CaliforniaLos AngelesUSA

Personalised recommendations