Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 8, pp 1495–1508 | Cite as

Synchronization of incommensurate non-identical fractional order chaotic systems using active control

  • S. BhalekarEmail author
Regular Article Synchronization of Systems and Networks for Communication
Part of the following topical collections:
  1. Chaos, Cryptography and Communications

Abstract

Chaos synchronization in fractional order chaotic systems is receiving increasing attention due to its applications in secure communications. In this article we use an active control technique to synchronize incommensurate non-identical fractional order chaotic dynamical systems. The relation between system order and the synchronization time is discussed. It is observed that the synchronization can be achieved faster by increasing the system order. Further we provide an application of the proposed theory in secure communication.

Keywords

Chaotic System Rayleigh Number Fractional Order European Physical Journal Special Topic Fractional Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.M. Pecora, T.L. Carroll, Phys. Rev. Lett. 64(8), 821 (1990)CrossRefzbMATHMathSciNetADSGoogle Scholar
  2. 2.
    L.M. Pecora, T.L. Carroll, Phys. Rev. Lett. 44, 2374 (1991)MathSciNetADSGoogle Scholar
  3. 3.
    L. Kocarev, U. Parlitz, Phys. Rev. Lett. 74, 5028 (1995)CrossRefADSGoogle Scholar
  4. 4.
    T.L. Carroll, J.F. Heagy, L.M. Pecora, Phys. Rev. E 54(5), 4676 (1996)CrossRefADSGoogle Scholar
  5. 5.
    R. Hilfer, Applications of Fractional Calculus in Physics (World Scientific, USA, 2001)Google Scholar
  6. 6.
    R. He, P.G. Vaidya, Phys. Rev. E 57(2), 1532 (1998)CrossRefADSGoogle Scholar
  7. 7.
    O.M. Kwon, J.H. Park, S.M. Lee, Nonlinear Dyn. 63(1-2), 239 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    L. Huang, R. Feng, M. Wang, Phys. Lett. A 320, 271 (2004)CrossRefzbMATHMathSciNetADSGoogle Scholar
  9. 9.
    S.M. Lee, S.J. Choi, D.H. Ji, J.H. Park, S.C. Won, Nonlinear Dyn. 59(1-2), 277 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    T.L. Liao, Chaos Solitons Fractals 9, 1555 (1998)CrossRefzbMATHADSGoogle Scholar
  11. 11.
    M.T. Yassen, Appl. Math. Comput. 135(1), 113 (2001)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Y. Wang, Z. Guan, X. Wen, Chaos Solitons Fractals 19, 899 (2004)CrossRefzbMATHADSGoogle Scholar
  13. 13.
    J.H. Park, Chaos Solitons Fractals 25, 333 (2005)CrossRefzbMATHADSGoogle Scholar
  14. 14.
    D.H. Ji, S.C. Jeong, J.H. Park, S.C. Won, Nonlinear Dyn. 69(3), 1125 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    S. Bowong, F.M. Kakmeni, Chaos Solitons Fractals 21, 999 (2004)CrossRefzbMATHMathSciNetADSGoogle Scholar
  16. 16.
    J. Zhang, C. Li, H. Zhang, J. Yu, Chaos Solitons Fractals 21, 1183 (2004)CrossRefzbMATHMathSciNetADSGoogle Scholar
  17. 17.
    T.H. Lee, J.H. Park, S.M. Lee, O.M. Kwon, Int. J. Control. 86(1), 107 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    E.W. Bai, K.E. Lonngren, Chaos Solitons Fractals 8, 51 (1997)CrossRefzbMATHADSGoogle Scholar
  19. 19.
    M.C. Ho, Y.C. Hung, Phys. Lett. A 301, 424 (2002)CrossRefzbMATHMathSciNetADSGoogle Scholar
  20. 20.
    M.T. Yassen, Chaos Solitons Fractals 23, 131 (2005)CrossRefzbMATHMathSciNetADSGoogle Scholar
  21. 21.
    S. Bhalekar, V. Daftardar-Gejji, Commun. Nonlinear Sci. Numer. Simulat. 15(11), 3536 (2010)CrossRefzbMATHMathSciNetADSGoogle Scholar
  22. 22.
    I. Podlubny, Fractional Differential Equations (Academic Press, San Diego, 1999)Google Scholar
  23. 23.
    S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications (Gordon and Breach, Yverdon, 1993)Google Scholar
  24. 24.
    A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory Appl. Fract. Diff. Equ. (Elsevier, Amsterdam, 2006)Google Scholar
  25. 25.
    J. Sabatier, S. Poullain, P. Latteux, J. Thomas, A. Oustaloup, Nonlinear Dyn. 38, 383 (2004)CrossRefzbMATHGoogle Scholar
  26. 26.
    M. Caputo, F. Mainardi, Pure Appl. Geophys. 91, 134 (1971)CrossRefADSGoogle Scholar
  27. 27.
    F. Mainardi, Y. Luchko, G. Pagnini, Frac. Calc. Appl. Anal. 4(2), 153 (2001)zbMATHMathSciNetGoogle Scholar
  28. 28.
    O.P. Agrawal, Nonlinear Dyn. 29, 145 (2002)CrossRefzbMATHGoogle Scholar
  29. 29.
    V. Daftardar-Gejji, S. Bhalekar, Appl. Math. Comput. 202, 113 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    H.G. Sun, W. Chen, Y.Q. Chen, Physica A 388, 4586 (2009)CrossRefADSGoogle Scholar
  31. 31.
    I.S. Jesus, Machado, Nonlinear Dyn. 54(3), 263 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    T.J. Anastasio, Biol. Cybernet. 72, 69 (1994)CrossRefGoogle Scholar
  33. 33.
    M.D. Ortigueira, J.A.T. Machado, Signal Proc. 86(10), 2503 (2006)CrossRefzbMATHGoogle Scholar
  34. 34.
    R.L. Magin, Fractional Calculus in Bioengineering (Begll House Publishers, USA, 2006)Google Scholar
  35. 35.
    I. Grigorenko, E. Grigorenko, Phys. Rev. Lett. 91(3), 034101 (2003)CrossRefADSGoogle Scholar
  36. 36.
    C. Li, G. Peng, Chaos Solitons Fractals 22, 443 (2004)CrossRefzbMATHMathSciNetADSGoogle Scholar
  37. 37.
    J.G. Lü, Phys. Lett. A 354(4), 305 (2006)CrossRefADSGoogle Scholar
  38. 38.
    C. Li, G. Chen, Phys. A: Stat. Mech. Appl. 341, 55 (2004)CrossRefGoogle Scholar
  39. 39.
    V. Daftardar-Gejji, S. Bhalekar, Comput. Math. Appl. 59(3), 1117 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    W.H. Deng, C.P. Li, Physica A 353, 61 (2005)CrossRefADSGoogle Scholar
  41. 41.
    C.P. Li, W.H. Deng, Int. J. Modern Phys. B 20(7), 791 (2006)CrossRefzbMATHMathSciNetADSGoogle Scholar
  42. 42.
    C.P. Lia, W.H. Deng, D. Xu, Physica A 360, 171 (2006)CrossRefMathSciNetADSGoogle Scholar
  43. 43.
    J. Wang, X. Xionga, Y. Zhang, Physica A 370, 279 (2006)CrossRefADSGoogle Scholar
  44. 44.
    J. Wang, Y. Zhang, Chaos Solitons Fractals 30, 1265 (2006)CrossRefzbMATHMathSciNetADSGoogle Scholar
  45. 45.
    W. Xingyuan, H. Yijie, Phy. Lett. A 372, 435 (2008)CrossRefzbMATHGoogle Scholar
  46. 46.
    Y. Yu, H. Li, Physica A 387, 1393 (2008)CrossRefMathSciNetADSGoogle Scholar
  47. 47.
    M.S. Tavazoei, M. Haeri, Physica A 387, 57 (2008)CrossRefMathSciNetADSGoogle Scholar
  48. 48.
    A. Hajipoor, H.T. Shandiz, H. Marvi, World Appl. Sci. J. 6(11), 1540 (2009)Google Scholar
  49. 49.
    M.S. Tavazoei, M. Haeri, Physica D 237, 2628 (2008)CrossRefzbMATHMathSciNetADSGoogle Scholar
  50. 50.
    X. Wu, S. Shen, Int. J. Comput. Math. 86(7), 1274 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  51. 51.
    C. Liu, L. Liu, T. Liu, Chaos Solitons Fractals 39(4), 1950 (2009)CrossRefzbMATHADSGoogle Scholar
  52. 52.
    W.C. Chen, Chaos Solitons Fractals 36, 1305 (2008)CrossRefADSGoogle Scholar
  53. 53.
    D. Matignon, Stability results for fractional differential equations with applications to control processing. In: Computational Engineering in Systems and Application multiconference, IMACS, IEEE-SMC proceedings, Lille, France, July, Vol. 2 (1996), p. 963–8Google Scholar
  54. 54.
    M.S. Tavazoei, M. Haeri, Phys. Lett. A 367, 102 (2007)CrossRefzbMATHADSGoogle Scholar
  55. 55.
    Y. Luchko, R. Gorenflo, Acta Math. Vietnamica 24, 207 (1999)zbMATHMathSciNetGoogle Scholar
  56. 56.
    K. Diethelm, N.J. Ford, A.D. Freed, Nonlinear Dyn. 29, 3 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  57. 57.
    K. Diethelm, Elec. Trans. Numer. Anal. 5, 1 (1997)zbMATHMathSciNetGoogle Scholar
  58. 58.
    K. Diethelm, N.J. Ford, J. Math. Anal. Appl. 265, 229 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  59. 59.
    D. Ghosh, S. Banerjee, A.R. Chowdhury, Europhys. Lett. 80, 30006 (2007)CrossRefMathSciNetADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  1. 1.Department of MathematicsShivaji UniversityVidyanagarKolhapurIndia

Personalised recommendations