The European Physical Journal Special Topics

, Volume 223, Issue 8, pp 1481–1493 | Cite as

An LPV framework for chaos synchronization in communication

  • M. Halimi
  • G. MillériouxEmail author
Regular Article Synchronization of Systems and Networks for Communication
Part of the following topical collections:
  1. Chaos, Cryptography and Communications


This paper proposes a unified framework to achieve chaos synchronization of both classes of chaotic discrete-time systems, namely maps involving polynomial nonlinearities and piecewise linear maps. It is shown that all of those chaotic systems can be rewritten as a polytopic Linear Parameter Varying (LPV) system. A unified approach to tackle chaos synchronization problems encountered in communication is derived.


Chaotic System European Physical Journal Special Topic Linear Matrix Inequality Chaos Synchronization State Reconstruction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.E. Knuth, The Art of Computer Programming, Vol. 2 (Addison-Wesley, Reading, MA, 1998)Google Scholar
  2. 2.
    M.J. Ogorzalek, IEEE Trans. Circuits. Syst. I: Fundamental Theo. Appl. 40, 693 (1993)CrossRefzbMATHGoogle Scholar
  3. 3.
    M. Hasler, Int. J. Bif. Chaos 8, 647 (1998)CrossRefzbMATHGoogle Scholar
  4. 4.
    T. Yang, Int. J. Comput. Cognition (2004), available at
  5. 5.
    G. Millérioux, J.M. Amigó, J. Daafouz, IEEE Trans. Circ. Syst. I: Regul. Papers 55, 1695 (2008)CrossRefGoogle Scholar
  6. 6.
    S. Banerjee, Chaos Synchronization and Cryptography for Secure Communications: Applications for Encryption, IGI Global (2010)Google Scholar
  7. 7.
    H. Nijmeijer, I.M.Y. Mareels, IEEE Trans. Circ. Syst. I: Fund. Theor. Appl. 44, 882 (1997)CrossRefMathSciNetGoogle Scholar
  8. 8.
    G. Grassi, S. Mascolo, IEEE Trans. Circ. Syst. I: Fund. Theor. Appl. 44, 1011 (1997)CrossRefGoogle Scholar
  9. 9.
    M. Itoh, C.W. Wu, L.O. Chua, Int. J. Bif. Chaos 7, 275 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    G. Millérioux, Int. J. Bif. Chaos 7, 1635 (1997)CrossRefzbMATHGoogle Scholar
  11. 11.
    P. Apkarian, P. Gahinet, G. Becker, IEEE Trans. Automatic Contr. 40, 853 (1995)CrossRefzbMATHGoogle Scholar
  12. 12.
    A. Packard, G. Balas, Theory and application of linear parameter-varying control techniques (1997)Google Scholar
  13. 13.
    D.J. Leith, W.E. Leithead, Int. J. Contr. 73, 1001 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    C. Scherer, Automatica 37, 361 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    S.M. Lee, J.H. Park, Appl. Math. Comput. 190, 671 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    M. Farhood, G.E. Dullerud, Automatica 44, 2108 (2010)CrossRefMathSciNetGoogle Scholar
  17. 17.
    G.I. Bara, J. Daafouz, F. Kratz, J. Ragot, Int. J. Contr. 74, 1601 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    M. Heemels, J. Daafouz, G. Millérioux, IEEE Trans. Automatic Contr. 55, 2130 (2010)CrossRefGoogle Scholar
  19. 19.
    R. Toth, F. Felici, P.S.C. Heuberger, P.M.J. Van den Hof, Proceedings of the European Control Conference (2007)Google Scholar
  20. 20.
    M. Sato, Automatica 42, 2017 (2006)CrossRefzbMATHGoogle Scholar
  21. 21.
    S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, SIAM Studies Appl. Math. 15 (1994)Google Scholar
  22. 22.
    M.C. de Oliveira, D.P. Farias, J.C. Geromel, LMI solver,
  23. 23.
    M. Halimi, G. Millerioux, J. Daafouz, Robust Control and Linear Parameter Varying Approaches (Springer Berlin Heidelberg, 2013), p. 97Google Scholar
  24. 24.
    A. Goldsztejn, W. Hayes, P. Collins, SIAM J. Appl. Dyn. Syst. 10, 1480 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    H.E. Nusse, J.A. Yorke, Dynamics: Numerical Explorations (Springer, New York, 1994)Google Scholar
  26. 26.
    H.O. Peitgen, H. Jurgens, D. Saupe, Chaos and Fractals: New Frontiers of Science (Springer-Verlag, New York, 1992)Google Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  1. 1.Université de Lorraine, Centre de Recherche en Automatique de NancyNancyFrance

Personalised recommendations