The European Physical Journal Special Topics

, Volume 223, Issue 6, pp 1055–1061 | Cite as

Extreme quantum field theory and particle physics with IZEST

  • G.V. Dunne
Review IZEST Science: Extreme Fields and Nonlinear QED
Part of the following topical collections:
  1. Zetta-Exawatt Science and Technology

Abstract

The prospect of next-generation ultra-high-intensity laser sources has prompted recent renewed study of nonlinear QED processes, such as the Schwinger effect, in which the instability of the QED vacuum is probed by external fields. Experimental observation of these nonlinear QED effects would provide unprecedented controlled access to non-perturbative processes in quantum field theory under extreme conditions, which is of direct interest in particle physics and astrophysical applications. I summarize important theoretical issues, both conceptual and computational, related to these nonlinear QED effects.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Greiner, B. Müller, J. Rafelski, Quantum Electrodynamics Of Strong Fields (Springer, Berlin, 1985)Google Scholar
  2. 2.
    W. Dittrich, H. Gies, Springer Tracts Mod. Phys. 166, 1 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    A. Ringwald, Phys. Lett. B 510, 107 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    T. Heinzl, B. Liesfeld, K.-U. Amthor, H. Schwoerer, R. Sauerbrey, A. Wipf, Opt. Commun. 267, 318 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    T. Heinzl, Int. J. Mod. Phys. A 27, 1260010 (2012)ADSCrossRefGoogle Scholar
  6. 6.
    H. Gies, Eur. Phys. J. D 55, 311 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    G.V. Dunne, Eur. Phys. J. D 55, 327 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    R. Ruffini, G. Vereshchagin, S.-S. Xue, Phys. Rept. 487, 1 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    A. Di Piazza, C. Muller, K.Z. Hatsagortsyan, C.H. Keitel, Rev. Mod. Phys. 84, 1177 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    J. Schwinger, Phys. Rev. 82, 664 (1951)ADSCrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    W. Dittrich, M. Reuter, Effective Lagrangians In Quantum Electrodynamics, Lect. Notes Phys. 220, 1 (Springer, Berlin, 1985)Google Scholar
  12. 12.
    W. Heisenberg, H. Euler, Z. Phys. 98, 714 (1936)ADSCrossRefGoogle Scholar
  13. 13.
    G.V. Dunne, “Heisenberg-Euler effective Lagrangians: Basics and extensions,” Ian Kogan Memorial Collection, “From Fields to Strings: Circumnavigating Theoretical Physics”, edited by M. Shifman et al., Vol. 1 (World Scientific, 2005), p. 445Google Scholar
  14. 14.
    L.V. Keldysh, Sov. Phys. JETP 20, 1307 (1965)MathSciNetGoogle Scholar
  15. 15.
    E. Brézin, C. Itzykson, Phys. Rev. D 2, 1191 (1970)ADSCrossRefGoogle Scholar
  16. 16.
    V.S. Popov, Sov. Phys. JETP 34, 709 (1972)ADSGoogle Scholar
  17. 17.
    D.L. Burke, et al., Phys. Rev. Lett. 79, 1626 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    H. Hu, C. Muller, C.H. Keitel, Phys. Rev. Lett. 105, 080401 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    C. Harvey, T. Heinzl, A. Ilderton, Phys. Rev. A 79, 063407 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    J. Rau, B. Muller, Phys. Rept. 272, 1 (1996)ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    S.A. Smolyansky, G. Ropke, S.M. Schmidt, D. Blaschke, V.D. Toneev, A.V. Prozorkevich, “Dynamical derivation of a quantum kinetic equation for particle production in the Schwinger mechanism” [arXiv:hep-ph/9712377]Google Scholar
  22. 22.
    Y. Kluger, E. Mottola, J.M. Eisenberg, Phys. Rev. D 58, 125015 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    R. Alkofer, M.B. Hecht, C.D. Roberts, S.M. Schmidt, D.V. Vinnik, Phys. Rev. Lett. 87, 193902 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    M. Ruf, G.R. Mocken, C. Müller, K.Z. Hatsagortsyan, C.H. Keitel, Phys. Rev. Lett. 102, 080402 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    S.P. Gavrilov, D.M. Gitman, Phys. Rev. D 78, 045017 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    I. Bialynicki-Birula, P. Gornicki, J. Rafelski, Phys. Rev. D 44, 1825 (1991)ADSCrossRefGoogle Scholar
  27. 27.
    F. Hebenstreit, R. Alkofer, H. Gies, Phys. Rev. D 82, 105026 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    S.P. Kim, D.N. Page, Phys. Rev. D 65, 105002 (2002)ADSCrossRefGoogle Scholar
  29. 29.
    G.V. Dunne, C. Schubert, Phys. Rev. D 72, 105004 (2005)ADSCrossRefMathSciNetGoogle Scholar
  30. 30.
    G.V. Dunne, Q.-h. Wang, H. Gies, C. Schubert, Phys. Rev. D 73, 065028 (2006)ADSCrossRefMathSciNetGoogle Scholar
  31. 31.
    G.V. Dunne, Q.h. Wang, Phys. Rev. D 74, 065015 (2006)ADSCrossRefMathSciNetGoogle Scholar
  32. 32.
    R.P. Feynman, Phys. Rev. 76, 749 (1949)ADSCrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    S.S. Bulanov, V.D. Mur, N.B. Narozhny, et al., Phys. Rev. Lett. 104, 220404 (2010)ADSCrossRefGoogle Scholar
  34. 34.
    R. Schutzhold, H. Gies, G. Dunne, Phys. Rev. Lett. 101, 130404 (2008)ADSCrossRefMathSciNetGoogle Scholar
  35. 35.
    G.V. Dunne, H. Gies, R. Schutzhold, Phys. Rev. D 80, 111301 (2009)ADSCrossRefGoogle Scholar
  36. 36.
    A. Di Piazza, E. Lotstedt, A.I. Milstein, et al., Phys. Rev. Lett. 103, 170403 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    R.P. Feynman, Phys. Rev. 80, 440 (1950)ADSCrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    C. Schubert, Phys. Rept. 355, 73 (2001)ADSCrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    H. Gies, K. Klingmuller, Phys. Rev. D 72, 065001 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    D.D. Dietrich, G.V. Dunne, J. Phys. A: Math. Theor. 40, F825 (2007)ADSCrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    C.K. Dumlu, G.V. Dunne, Phys. Rev. D 84, 125023 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    V.S. Popov, Usp. Fiz. Nauk 174, 921 (2004)CrossRefGoogle Scholar
  43. 43.
    V.S. Popov, Phys. Usp. 47, 855 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    P. Szriftgiser, D. Guéry-Odelin, M. Arndt, J. Dalibard, Phys. Rev. Lett. 77, 4 (1996)ADSCrossRefGoogle Scholar
  45. 45.
    F. Lindner, et al., Phys. Rev. Lett. 95, 040401 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    F. Hebenstreit, R. Alkofer, G.V. Dunne, H. Gies, Phys. Rev. Lett. 102, 150404 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    F. Hebenstreit, R. Alkofer, G.V. Dunne, H. Gies, Int. J. Mod. Phys. A 25, 2171 (2010)CrossRefGoogle Scholar
  48. 48.
    C.K. Dumlu, G.V. Dunne, Phys. Rev. Lett. 104, 250402 (2010)ADSCrossRefGoogle Scholar
  49. 49.
    C.K. Dumlu, G.V. Dunne, Phys. Rev. D 83, 065028 (2011)ADSCrossRefGoogle Scholar
  50. 50.
    E. Akkermans, G.V. Dunne, Phys. Rev. Lett. 108, 030401 (2012)ADSCrossRefGoogle Scholar
  51. 51.
    T. Oka, H. Aoki, “Nonequilibrium Quantum Breakdown in a Strongly Correlated Electron System”, in Quantum and Semi-classical Percolation and Breakdown in Disordered Solids, edited by A.K. Sen, K.K. Bardhan, B.K. Chakrabarti, Lecture Note Phys., Vol. 762 (Springer-Verlag, 2008) [arXiv:0803.0422]
  52. 52.
    I. Walmsley, H. Rabitz, Phys. Today 56, 43 (2003)CrossRefGoogle Scholar
  53. 53.
    W. Zhu, J. Botina, H, Rabitz, J. Chem. Phys. 108, 1953 (1998)ADSCrossRefGoogle Scholar
  54. 54.
    A. Markmann, G.V. Dunne, V.S. Batista, poster at Gordon conference, Quantum Control of Light & Matter (August 2011)Google Scholar
  55. 55.
    C. Kohlfurst, M. Mitter, G. von Winckel, F. Hebenstreit, R. Alkofer, Phys. Rev. D 88, 045028 (2013)ADSCrossRefGoogle Scholar
  56. 56.
    A.R. Bell, J.G. Kirk, Phys. Rev. Lett. 101, 200403 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    N.V. Elkina, A.M. Fedotov, I.Y. Kostyukov, M.V. Legkov, N.B. Narozhny, E.N. Nerush, H. Ruhl, Phys. Rev. ST Accel. Beams 14, 054401 (2011)ADSCrossRefGoogle Scholar
  58. 58.
    A.M. Fedotov, N.B. Narozhny, G. Mourou, G. Korn, Phys. Rev. Lett. 105, 080402 (2010)ADSCrossRefGoogle Scholar
  59. 59.
    S.S. Bulanov, T.Z. Esirkepov, A.G.R. Thomas, J.K. Koga, S.V. Bulanov, Phys. Rev. Lett. 105, 220407 (2010)ADSCrossRefGoogle Scholar
  60. 60.
    A. Di Piazza, K.Z. Hatsagortsyan, C.H. Keitel, Phys. Rev. Lett. 105, 220403 (2010)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • G.V. Dunne
    • 1
  1. 1.Physics Department, University of ConnecticutStorrs, MansfieldUSA

Personalised recommendations