Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 8, pp 1447–1463 | Cite as

Isochronal synchronization in networks and chaos-based TDMA communication

  • J.M.V. Grzybowski
  • E.E.N. MacauEmail author
  • T. Yoneyama
Regular Article Synchronization of Systems and Networks for Communication
Part of the following topical collections:
  1. Chaos, Cryptography and Communications

Abstract

Pairs of delay-coupled chaotic systems were shown to be able to achieve isochronal synchronization under bidirectional coupling and self-feedback. Such identical-in-time behavior was demonstrated to be stable under a set of conditions and to support simultaneous bidirectional communication between pairs of chaotic oscillators coupled with time-delay. More recently, it was shown that isochronal synchronization can emerge in networks with several hundreds of oscillators, which allows its exploitation for communication in distributed systems. In this paper, we introduce a conceptual framework for the application of isochronal synchronization to TDMA communication in networks of delay-coupled chaotic oscillators. On the basis of the stable and identical-in-time behavior of delay-coupled chaotic systems, the chaotic dynamics of distributed oscillators is used to support and sustain coordinate communication among nodes over the network. On the basis of the unique features of chaotic systems in isochronal synchronization, the chaotic signals are used to timestamp clock readings at the physical layer such that logical clock synchronization among the nodes (a prerequisite for TDMA) can be exploited using the same basic structure. The result is a standalone network communication scheme that can be advantageously applied in the context of ad-hoc networks or alike, especially short-ranged ones that yield low values of time-delay. As explored to its depths in practical implementations, this conceptual framework is argued to have potential to provide gain in simplicity, security and efficiency in communication schemes for autonomous/standalone network applications.

Keywords

Time Slot Chaotic System European Physical Journal Special Topic Synchronization Error Chaotic Oscillator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.S. Baptista, E.E.N. Macau, C. Grebogi, Y.C. Lai, E. Rosa Jr., Phys. Rev. E 62, 4835 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. Garcia-Ojalvo, C.R. Mirasso, L. Pesquera, K.A. Shore, Nature 438, 343 (2005)ADSCrossRefGoogle Scholar
  3. 3.
    A. Argyris, E. Grivas, M. Hamacher, A. Bogris, D. Syvridis, Opt. Expr. 18, 5188 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    U. Parlitz, T. Kocarev, T. Stojanovski, H. Preckel, Phys. Rev. E 53, 4351 (1996)ADSCrossRefGoogle Scholar
  5. 5.
    C. Grebogi, Y.C. Lai, Syst. Control Lett. 31, 307 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    M.S. Baptista, E. Rosa Jr., C. Grebogi, Phys. Rev. E 61, 3590 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    S. Hayes, C. Grebogi, E. Ott, Phys. Rev. Lett. 70, 3031 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    J.M.F. Avila, J.R. Rios Leite, Opt. Lett. 17, 21442 (2009)Google Scholar
  9. 9.
    T. Deng, G.Q. Xia, L.P. Cao, J.G. Chen, X.D. Lin, Z.M. Wu, Opt. Commun. 282, 2243 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Xia, C.K. Tse, F.C.M. Lau, IEEE Trans. Circuit Syst. II 51, 580 (2004)CrossRefGoogle Scholar
  11. 11.
    R.M. Lopez-Gutierrez, C. Posadas-Castillo, Lopez-Mancilla, C. Cruz-Hernandez, Chaos, Solitons Fractals 41, 277 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    J.M. Liu, H.F. Chen, S. Tang, IEEE Trans. Circuit Syst. I 48, 1475 (2001)CrossRefGoogle Scholar
  13. 13.
    K.M. Cuomo, A.V. Oppenheim, Phys. Rev. Lett. 71, 65 (1993)ADSCrossRefGoogle Scholar
  14. 14.
    K.M. Cuomo, A.V. Oppenheim, S.H. Strogatz, IEEE Trans. Circuits Syst. Express Briefs 40, 634 (1993)CrossRefGoogle Scholar
  15. 15.
    A. Wagemakers, J.M. Buldu, M.A.F. Sanjuan, Chaos 17, 023128 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    R. Vicente, C.R. Mirasso, I. Fischer, Opt. Lett. 32, 403 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    B.B. Zhou, R. Roy, Phys. Rev. E 75, 026205 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    A. Wagemakers, J.M. Buldu, M.A.F. Sanjuan, Europhys. Lett. 81, 40005 (2008)ADSCrossRefGoogle Scholar
  19. 19.
    I. Kanter, E. Kopelowitz, W. Kinzel, Phys. Rev. Lett. 101, 084102 (2008)ADSCrossRefGoogle Scholar
  20. 20.
    E. Klein, N. Gross, M. Rosenbluh, W. Kinzel, L. Khaytovich, I. Kanter, Phys. Rev. E 73, 066214 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    N. Jiang, W. Pan, B. Luo, L. Yan, S. Xiang, L. Yang, D. Zheng, N. Li, Phys. Rev. E 81, 066217 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    T. Oguchi, H. Nijmeijer, T. Yamamoto, Proc. Eur. Contr. Conf., 3056 (2007)Google Scholar
  23. 23.
    T. Oguchi, H. Nijmeijer, T. Yamamoto, Chaos 18, 037108 (2008)ADSCrossRefMathSciNetGoogle Scholar
  24. 24.
    T. Oguchi, H. Nijmeijer, T. Yamamoto, T. Kniknie, Synchr. Four Identical Nonlinear Syst. Time-delay, 12153 (2008)Google Scholar
  25. 25.
    J.M.V. Grzybowski, E.E.N. Macau, T. Yoneyama, J. Phys. A: Math. Theor. 44, 175103 (2011)ADSCrossRefMathSciNetGoogle Scholar
  26. 26.
    J.M.V. Grzybowski, E.E.N. Macau, T. Yoneyama, Chaos 22, 033152 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    R. Fan, I. Chakraborty, N.A. Lynch, Proc. OPODIS 67, 400 (2004)Google Scholar
  28. 28.
    Q. Li, D. Rus, IEEE Trans. Comput. 55, 214 (2006)CrossRefGoogle Scholar
  29. 29.
    B. Sundararaman, U. Buy, A.D. Kshemkalyani, Ad Hoc Networks 3, 281 (2005)CrossRefGoogle Scholar
  30. 30.
    C. Lenzen, T. Locher, P. Sommer, R. Wattenhofer, Clock synchronization: open problems in theory and practice, Lect. Notes in Comput. Sci. (Springer, 2000)Google Scholar
  31. 31.
    K.V. Prasad, Principles of digital communication systems and computer networks (Charles River Media, 2004)Google Scholar
  32. 32.
    S. Leffer, Comput. Lab. Seminar, 1 (2009)Google Scholar
  33. 33.
    E.N. Lorenz, J. Atmospheric Sci. 20, 130 (1963)ADSCrossRefGoogle Scholar
  34. 34.
    M.S. Baptista, E.E.N. Macau, C. Grebogi, Acta Astronaut. 54, 153 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    E.E.N. Macau, C. Marinho, Acta Astronaut. 53, 465 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    C.M.P. Marinho, E.E.N. Macau, T. Yoneyama, Acta Astronaut. 57, 230 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    E.E.N. Macau, M.S. Baptista, C. Grebogi, Chaos (Woodbury) 13, 145 (2003)CrossRefGoogle Scholar
  38. 38.
    A. Islam, Julkarnain, A. Kader, Int. J. Elec. Comp. Sci. 10, 13 (2010)Google Scholar
  39. 39.
    M. Itoh, L.O. Chua, Multiplexing Techniques via Chaos, 905 (1997)Google Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  1. 1.Instituto Tecnológico de Aeronáutica, ITA, Praça Marechal Eduardo GomesSão José dos CamposBrazil
  2. 2.Instituto Nacional de Pesquisas Espaciais, INPESão José dos CamposBrazil

Personalised recommendations