The European Physical Journal Special Topics

, Volume 223, Issue 8, pp 1561–1577 | Cite as

Phase synchronization of instrumental music signals

  • Sayan Mukherjee
  • Sanjay Kumar Palit
  • Santo Banerjee
  • M.R.K. Ariffin
  • D.K. Bhattacharya
Regular Article Synchronization of Systems and Networks for Communication
Part of the following topical collections:
  1. Chaos, Cryptography and Communications


Signal analysis is one of the finest scientific techniques in communication theory. Some quantitative and qualitative measures describe the pattern of a music signal, vary from one to another. Same musical recital, when played by different instrumentalists, generates different types of music patterns. The reason behind various patterns is the psycho-acoustic measures – Dynamics, Timber, Tonality and Rhythm, varies in each time. However, the psycho-acoustic study of the music signals does not reveal any idea about the similarity between the signals. For such cases, study of synchronization of long-term nonlinear dynamics may provide effective results. In this context, phase synchronization (PS) is one of the measures to show synchronization between two non-identical signals. In fact, it is very critical to investigate any other kind of synchronization for experimental condition, because those are completely non identical signals. Also, there exists equivalence between the phases and the distances of the diagonal line in Recurrence plot (RP) of the signals, which is quantifiable by the recurrence quantification measure τ-recurrence rate. This paper considers two nonlinear music signals based on same raga played by two eminent sitar instrumentalists as two non-identical sources. The psycho-acoustic study shows how the Dynamics, Timber, Tonality and Rhythm vary for the two music signals. Then, long term analysis in the form of phase space reconstruction is performed, which reveals the chaotic phase spaces for both the signals. From the RP of both the phase spaces, τ-recurrence rate is calculated. Finally by the correlation of normalized tau-recurrence rate of their 3D phase spaces and the PS of the two music signals has been established. The numerical results well support the analysis.


Phase Space European Physical Journal Special Topic Phase Synchronization Average Mutual Information Surrogate Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.M. Howard, J. Angus, Acoustics and Psychoacoustics (Linacre House, Jordan Hill, Oxford, Focal Press, 2001)Google Scholar
  2. 2.
    Pecorra , Carroll, Phys. Rev. Lett. 64, 821 (1990)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    D. Ghosh, S. Banerjee, A. Roy Chowdhury, Phys. Lett. A 374, 2143 (2010)ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    P. Mukherjee, S. Banerjee, Phys. Scr. 82, 055010 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    M.A. Khan, A.K. Mondal, S. Poria, Int. J. Appl. Mechan. Eng. 16, 597 (2011)Google Scholar
  6. 6.
    A.E. Hramov, A.A. Koronovskii, Chaos: An Interdiscipl. J. Nonlinear Sci. 14, 603 (2004)CrossRefMathSciNetGoogle Scholar
  7. 7.
    S.J.S. Theesar, S. Banerjee, P. Balasubramaniam, Nonlinear Dyn. 70(3), 1977 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    A. Yassen, Phys. Lett. A 278, 191 (2001)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    M.C. Ho, Y.C. Hung, Phys. Lett. A 301, 424 (2002)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    S.C. Sinha, J.T. Henrichs, B.A. Ravindra, Int. J. Bifurcat. Chaos 13, 2343 (2003)CrossRefGoogle Scholar
  11. 11.
    K.M. Cuomo, A.V. Oppenheim, S.H. Strogatz, IEEE Trans. Circuits Syst. II 40, 626 (1993)CrossRefGoogle Scholar
  12. 12.
    K.S. Sudheer, M. Sabir, Pramana-J. Phys. 73, 781 (2009)ADSCrossRefGoogle Scholar
  13. 13.
    M. Shahzad, Prog. Appl. Math. 3, 16 (2012)MathSciNetGoogle Scholar
  14. 14.
    L. Huang, R. Feng, M. Wang, Phys. Lett. A 320, 271 (2004)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Z. Chen, W. Lin, J. Zhou, Chaos 17, 023106 (2007)ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    P. Cook, Music, Cognition and Computerized Sound: An Introduction to Psychoacoustics (Cambridge: The MIT Press, 1999)Google Scholar
  17. 17.
    J.C. Robinson, Nonlinearity 18, 2135 (2005)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    D.T. Kaplan, L. Glass, Understanding Nonlinear Dynamics (Springer, New York, 1995)Google Scholar
  19. 19.
    S.H. Strogatz, Nonlinear Dynamics and Chaos (Addison-Wesley, 1994)Google Scholar
  20. 20.
    E. Ott, Chaos in Dynamical Systems (Cambridge University Press, 1993)Google Scholar
  21. 21.
    T. Vialar, Complex and Chaotic Nonlinear Dynamics (Springer-Verlag Berlin Heidelberg, 2009)Google Scholar
  22. 22.
    J.L. McCauley, Chaos, Dynamics, and Fractals: An Algorithmic Approach to Deterministic Chaos (Cambridge University Press, 1993)Google Scholar
  23. 23.
    G.P. Williams, Chaos Theory Tamed (Joseph Henry Press, Washington D.C., 1997)Google Scholar
  24. 24.
    J.P. Huke, Manchester Inst. Math. Sci. 26 (2006)Google Scholar
  25. 25.
    M. Casdagli, S. Eubank, J. Doyne Farmer, J. Gibson, Physica D 51, 52 (1991)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    M.B. Kennel, R. Brown, H.D.I. Abarbanel, Phys. Rev. A 45(6), 3403 (1992)ADSCrossRefGoogle Scholar
  27. 27.
    W. Liebert, K. Pawelzik, H.G. Schuster, Europhys. Lett. 14(6), 521 (1991)ADSCrossRefMathSciNetGoogle Scholar
  28. 28.
    H. Pi, C. Peterson, Neural Comp. 6, 509 (1994)CrossRefGoogle Scholar
  29. 29.
    J. Theiler, S. Eubank, A. Longtin, B. Galdrikian, J. Farmer, Physica D 58, 77 (1992)ADSCrossRefzbMATHGoogle Scholar
  30. 30.
    D. Kugiumtzis, Phys. Rev. E 6, 2808 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    C. Richard, A. Ferrari, H. Amoud, P. Honeine, P. Flandrin, P. Borgnat, in IEEE Int. Conf. On Acoustics, Speech and Signal Proc. ICASSP (2010)Google Scholar
  32. 32.
    T. Schreiber, A. Schmitz, Physica D 142, 346 (2000)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    T. Nakamura, M. Small, Y. Hirata, Phys. Rev. E 74, 026205 (2006)ADSCrossRefGoogle Scholar
  34. 34.
    D.L. Lópeza, A.A.O. Gutierrez, E.D. Trejos, Nonlinear Analysis: Real World Applications (2010)Google Scholar
  35. 35.
    A.M. Fraser, H.L. Swinney, Phys. Rev. A 33, 1134 (1986)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    W. Liebert, H.G. Schuster, Phys. Lett. A 142, 107 (1989)ADSCrossRefMathSciNetGoogle Scholar
  37. 37.
    K. Briggs, Phys. Lett. A 151, 27 (1990)ADSCrossRefMathSciNetGoogle Scholar
  38. 38.
    A. Wolf, B.J. Swift, H.L. Swinney, J.A. Vastano, Physica D 16, 285 (1985)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  39. 39.
    M.T. Rosenstein, J.J. Collins, C.J. De Luca, Physica D 65, 117 (1993)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  40. 40.
    J.P. Eckmann, S.O. Kamphorst, D. Ruelle, Europhys. Lett. 5, 973 (1987)ADSCrossRefGoogle Scholar
  41. 41.
    P. Kaluzny, R. Tarnecki, Biol. Cybernet. 68, 527 (1993)CrossRefGoogle Scholar
  42. 42.
    N. Thomasson, T.J. Hoeppner, C.L. Webber Jr., J.P. Zbilut, Phys. Lett. A 279, 94 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    N. Marwan, N. Wessel, U. Meyerfeldt, A. Schirdewan, J. Kurths, Phys. Rev. E 66(2), 026702 (2002)ADSCrossRefGoogle Scholar
  44. 44.
    N. Marwan, M.C. Romano, M. Thiel, J. Kurths, Phys. Reports 438, 237 (2007)ADSCrossRefMathSciNetGoogle Scholar
  45. 45.
    A. Facchini, H. Kantz, Phys. Rev. E 75, 36215 (2007)ADSCrossRefGoogle Scholar
  46. 46.
    M.C. Casdagli, Physica D 108, 12 (1997)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  47. 47.
    J.P. Zbilut, J.C. Mitchell, A. Giuliani, A. Colosimo, N. Marwan, C.L. Webber, Physica A 343, 348 (2004)ADSCrossRefGoogle Scholar
  48. 48.
    L. Matassini, H. Kantz, J. Hoyst, R. Hegger, Phys. Rev. E 65(2), 021102 (2002)ADSCrossRefGoogle Scholar
  49. 49.
    C.L. Webber, J.P. Zbilut, J. Appl. Physiol. 76, 965 (1994)Google Scholar
  50. 50.
    J. Gao, H. Cai, Phys. Lett. A 270, 75 (2000)ADSCrossRefGoogle Scholar
  51. 51.
    E. Bradley, R. Mantilla, Chaos 12(3), 1054 (2002)CrossRefMathSciNetGoogle Scholar
  52. 52.
    H. Castellini, L. Romanelli, Physica A 342, 301 (2004)ADSCrossRefGoogle Scholar
  53. 53.
    N.F. Rulkov, M.M. Suschik, L.S.T. Simring, Phys. Rev. E. 51, 980 (1995)ADSCrossRefGoogle Scholar
  54. 54.
    L. Kocarev, U. Parlitz, Phys. Rev. Lett. 76, 1816 (1996)ADSCrossRefGoogle Scholar
  55. 55.
    S. Boccaletti, J. Kurths, G. Osipovd, D.L. Valladares, C.S. Zhouc, Phys. Reports 366, 7497 (2002)CrossRefGoogle Scholar
  56. 56.
    F. Varela, J.P. Lachaux, E. Rodriguez, J. Martinerie, Nat. Rev. Neurosci. 2, 229 (2001)CrossRefGoogle Scholar
  57. 57.
    I.I. Blekman, Synchronization in Science and Technology (ASME Press, New York, 1988)Google Scholar
  58. 58.
    M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 76 (1996)Google Scholar
  59. 59.
    E.R. Rosa, E. Ott, M.H. Hess, Phys. Rev. Lett. 80 (1998)Google Scholar
  60. 60.
    M.G. Rosenblum, A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 1804 (1997)CrossRefGoogle Scholar
  61. 61.
    H. Fujisaka, T. Yamada, Prog. Theor. Phys. 69, 32 (1983)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  62. 62.
    A. Pikovsky, M. Zaks, M. Rosenblum, G. Osipov, J. Kurths, Chaos 7(4), 680 (1997)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  63. 63.
    L. Rabiner, B.H. Juangl, Fundamentals of Speech Recognition (Prentice-Hall, 1993)Google Scholar
  64. 64.
    P. Toiviainen, J.S. Snyder, Music Perception 21(1), 43 (2003)CrossRefGoogle Scholar
  65. 65.
    E. Gomez, Inform. J. Comput. 18(3), 294 (2006)CrossRefGoogle Scholar
  66. 66.
    C. Krumhansl, Cognitive Foundations of Musical Pitch (Oxford University Press, 1990)Google Scholar
  67. 67.
    J.P. Zbilut, J.M. Zaldivar-Comenges, F. Strozzi, Phys. Lett. A 297(3-4), 173 (2002)ADSCrossRefzbMATHGoogle Scholar
  68. 68.
    M. Thiel, M.C. Romano, J. Kurths, R. Meucci, E. Allaria, F.T. Arecchi, Physica D 171(3), 138 (2002)ADSCrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • Sayan Mukherjee
    • 1
  • Sanjay Kumar Palit
    • 2
  • Santo Banerjee
    • 3
  • M.R.K. Ariffin
    • 4
  • D.K. Bhattacharya
    • 5
  1. 1.Mathematics Department, Sivanath Sastri CollegeKolkataIndia
  2. 2.Basic Sciences & Humanities Department, Calcutta Institute of Engineering and ManagementKolkataIndia
  3. 3.Institute for Mathematical Research, Universiti Putra MalaysiaPutraMalaysia
  4. 4.Mathematics Department, Faculty of Science, Universiti Putra Malaysia, Malaysia Al-Kindi Cryptography Research Laboratory, Institute for Mathematical Research, Universiti Putra MalaysiaPutraMalaysia
  5. 5.Department of Instrumental MusicRabindra Bharati UniversityRabindra BharatiIndia

Personalised recommendations