Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 4, pp 649–663 | Cite as

Order and disorder in coupled metronome systems

  • Sz. Boda
  • L. Davidova
  • Z. Néda
Review
Part of the following topical collections:
  1. Synchronization of Pendula Systems

Abstract

Metronomes placed on a smoothly rotating disk are used for exemplifying order-disorder type phase-transitions. The ordered phase corresponds to spontaneously synchronized beats, while the disordered state is when the metronomes swing in unsynchronized manner. Using a given metronome ensemble, we propose several methods for switching between ordered and disordered states. The system is studied by controlled experiments and a realistic model. The model reproduces the experimental results, and allows to study large ensembles with good statistics. Finite-size effects and the increased fluctuation in the vicinity of the phase-transition point are also successfully reproduced.

Keywords

European Physical Journal Special Topic Pendula System Nominal Frequency Boda Kuramoto Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Kuramoto, I. Nishikawa, J. Statistical Phys. 49, 569 (1987)CrossRefzbMATHMathSciNetADSGoogle Scholar
  2. 2.
    C. Huygens, Société Hollandaise des Sciences (1665)Google Scholar
  3. 3.
    M. Bennet, M.F. Schatz, H. Rockwood, K. Wiesenfeld, Proc. Royal Soc. A 458, 563 (2002)CrossRefGoogle Scholar
  4. 4.
    M. Kumon, R. Washizaki, J. Sato, R.K.I. Mizumoto, Z. Iwai, Proc. 15th IFAC World Congr., Barcelona (2002)Google Scholar
  5. 5.
    A.L. Fradkov, B. Andrievsky, Int. J. Non-Linear Mech. 42, 895 (2007)CrossRefADSGoogle Scholar
  6. 6.
    M. Kapitaniak, K. Czolczynski, P. Perlikowski, A. Stefanski, T Kapitaniak, Phys. Reports 517, 1 (2012)CrossRefADSGoogle Scholar
  7. 7.
    K. Czolczynski, P. Perlikowski, A. Stefanski, T. Kapitaniak, Physica A 388, 5013 (2009)CrossRefADSGoogle Scholar
  8. 8.
    K. Czolczynski, P. Perlikowski, A. Stefanski, T. Kapitaniak, Int. J. Bifur. Chaos 21, 2047 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    J. Pantaleone, Amer. J. Phys. 70, 992 (2002)CrossRefADSGoogle Scholar
  10. 10.
    B. van der Pol, Phil. Mag. 3, 64 (1927)Google Scholar
  11. 11.
    H. Ulrichs, A. Mann, U. Parlitz, Chaos 19, 043120 (2009)CrossRefADSGoogle Scholar
  12. 12.
    Sz. Boda, Sz Ujvári, A. Tunyagi, Z. Néda, Eur. J. Phys. 34, 1451 (2013)CrossRefGoogle Scholar
  13. 13.
    Sz. Boda, Z. Néda, B. Tyukodi, A. Tunyagi, The Eur. Phys. J. B 86, 1 (2013)CrossRefGoogle Scholar
  14. 14.
    W.C. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson, J. Chem. Phys. 76, 637 (1982)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • Sz. Boda
    • 1
  • L. Davidova
    • 1
  • Z. Néda
    • 1
    • 2
  1. 1.Department of PhysicsBabeş-Bolyai UniversityCluj-NapocaRomania
  2. 2.Department of Mechatronics, Optics, Mechanical Engineering and InformaticsEdutus CollegeBudapestHungary

Personalised recommendations