Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 4, pp 631–648 | Cite as

Modeling of the dynamics of two coupled spherical pendula

  • B. Witkowski
Review
Part of the following topical collections:
  1. Synchronization of Pendula Systems

Abstract

We study the dynamics of the system of two spherical pendula mounted to the rigid beam which hang from the unmovable frame. Using Langrange’s multipliers the equations of motion have been derived. We identify two synchronous states in which pendula rotate in the same or different directions. The results of numerical simulations have been confirmed in the simple experiment.

Keywords

European Physical Journal Special Topic Simple Experiment Pendula System Mass Moment Bond Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Dilao, Chaos 19, 023118 (2009)CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    M. Bennett, M.F. Schatz, H. Rockwood, K. Wiesenfeld, Proc. R. Soc. Lond. A 458, 563 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Sz. Boda, Z. Neda, B. Tyukodi, A. Tunyagi, Eur. Phys. J. B 86, 263 (2013)CrossRefMathSciNetADSGoogle Scholar
  4. 4.
    J. Pantaleone, Am. J. Phys. 70, 992 (2002)CrossRefADSGoogle Scholar
  5. 5.
    I.I. Blekhman, ASME Press (New York, 1988)Google Scholar
  6. 6.
    A. Pogromsky, V.N. Belykh, H. Nijmeijer, Proceedings of the 42nd IEEE Conference on Design and Control, 4381 (2003)Google Scholar
  7. 7.
    M. Senator, J. Sound Vib. 291, 566 (2006)CrossRefADSGoogle Scholar
  8. 8.
    K. Czolczynski, P. Perlikowski, A. Stefanski, T. Kapitaniak, Physica A 388, 5013 (2009)CrossRefADSGoogle Scholar
  9. 9.
    K. Czolczynski, P. Perlikowski, A. Stefanski, T. Kapitaniak, Commun. Nonlinear Sci. Numer. Simul. 18, 386 (2013)CrossRefzbMATHMathSciNetADSGoogle Scholar
  10. 10.
    K. Czolczynski, P. Perlikowski, A. Stefanski, T. Kapitaniak, Chaos: An Interdisciplinary J. Nonlinear Sci. 21, 023129 (2011)CrossRefMathSciNetGoogle Scholar
  11. 11.
    K. Czolczynski, P. Perlikowski, A. Stefanski, T. Kapitaniak, Prog. Theor. Phys. 125, 1 (2011)CrossRefGoogle Scholar
  12. 12.
    M. Kapitaniak, P. Perlikowski, T. Kapitaniak, Commun. Nonlinear Sci. Numer. Simul. 18, 2088 (2013)CrossRefzbMATHMathSciNetADSGoogle Scholar
  13. 13.
    M. Kapitaniak, P. Brzeski, K. Czolczynski, P. Perlikowski, A. Stefanski, T. Kapitaniak, Progr. Theor. Phys. 128, 1141 (2012)CrossRefADSGoogle Scholar
  14. 14.
    M. Kapitaniak, K. Czolczynski, P. Perlikowski, A. Stefanski, T. Kapitaniak, Phys. Reports 517, 1 (2012)CrossRefADSGoogle Scholar
  15. 15.
    P. Perlikowski, M. Kapitaniak, K. Czolczynski, A. Stefanski, T. Kapitaniak, Int. J. Bifur. Chaos 22, 1250288 (2012)CrossRefMathSciNetGoogle Scholar
  16. 16.
    K. Czolczynski, P. Perlikowski, A. Stefanski, T. Kapitaniak, Int. J. Bifur. Chaos 22, 1250128 (2012)CrossRefMathSciNetGoogle Scholar
  17. 17.
    K. Czolczynski, P. Perlikowski, A. Stefanski, T. Kapitaniak, Commun. Nonlinear Sci. Numer. Simul. 17, 3658 (2011)CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    M.G. Olsson, Am. J. Phys. 46, 1118 (1978)CrossRefADSGoogle Scholar
  19. 19.
    M.G. Olsson, Am. J. Phys. 49, 531 (1981)CrossRefADSGoogle Scholar
  20. 20.
    S. Leyendecker, P. Betsch, P. Steinmann, Comput. Mech., 174 (2004)Google Scholar
  21. 21.
    TJ. Priest, J. Poth, The Physics Teacher (1982)Google Scholar
  22. 22.
    H.C. Mayer, R. Krechetnikov, Phys. Rev. E, 046117 (2012)Google Scholar
  23. 23.
    J. Strzalko, B. Mianowski, Wydawnictwo Politechniki Lodzkiej, 162 (1985)Google Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  1. 1.Division of DynamicsTechnical University of LodzLodzPoland

Personalised recommendations