The European Physical Journal Special Topics

, Volume 223, Issue 4, pp 613–629 | Cite as

Synchronization of two self-excited double pendula

  • P. Koluda
  • P. Perlikowski
  • Krzysztof Czolczynski
  • T. Kapitaniak
Review
Part of the following topical collections:
  1. Synchronization of Pendula Systems

Abstract

We consider the synchronization of two self-excited double pendula. We show that such pendula hanging on the same beam can have four different synchronous configurations. Our approximate analytical analysis allows us to derive the synchronization conditions and explain the observed types of synchronization. We consider an energy balance in the system and describe how the energy is transferred between the pendula via the oscillating beam, allowing thus the pendula synchronization. Changes and stability ranges of the obtained solutions with increasing and decreasing masses of the pendula are shown using path-following.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Andronov, A. Witt, S. Khaikin, Theory of Oscillations (Pergamon, Oxford, 1966)Google Scholar
  2. 2.
    I.I. Blekhman, Synchronization in Science and Technology (ASME, New York, 1988)Google Scholar
  3. 3.
    A. Pikovsky, M. Roesenblum, J. Kurths, Synchronization: An Universal Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001)Google Scholar
  4. 4.
    M.P. Aghababa, H.P. Aghababa, Nonlinear Dyn. 67, 2689 (2012)CrossRefMathSciNetGoogle Scholar
  5. 5.
    M. Kapitaniak, P. Brzeski, K. Czolczynski, P. Perlikowski, A. Stefanski, T. Kapitaniak, Prog. Theor. Phys. 128, 1141 (2012)CrossRefADSGoogle Scholar
  6. 6.
    C. Huygens, 1893, Letter to de Sluse, In: Oeuveres Completes de Christian Huygens, (letters; No. 1333 of 24 February 1665, No. 1335 of 26 February 1665, No. 1345 of 6 March 1665), (Société Hollandaise des Sciences, Martinus Nijhoff, La Haye)Google Scholar
  7. 7.
    M. Kapitaniak, K. Czolczynski, P. Perlikowski, A. Stefanski, T. Kapitaniak, Phys. Report 517, 1 (2012)CrossRefADSGoogle Scholar
  8. 8.
    M. Bennet, M.F. Schatz, H., Rockwood, K. Wiesenfeld, Proc. Roy. Soc. London A 458, 563 (2002)CrossRefGoogle Scholar
  9. 9.
    K. Czolczynski, P. Perlikowski, A. Stefanski, T. Kapitaniak, Prog. Theor. Phys. 122, 1027 (2009)CrossRefMATHADSGoogle Scholar
  10. 10.
    K. Czolczynski, P. Perlikowski, A. Stefanski, T. Kapitaniak, Physica A 388, 5013 (2009)CrossRefADSGoogle Scholar
  11. 11.
    K. Czolczynski, P. Perlikowski, A. Stefanski, T. Kapitaniak, Chaos 21, 023129 (2011)CrossRefMathSciNetADSGoogle Scholar
  12. 12.
    R. Dilao, Chaos 19, 023118 (2009)CrossRefMathSciNetADSGoogle Scholar
  13. 13.
    A.L. Fradkov, B. Andrievsky, Int. J. Non-linear Mech. 42, 895 (2007)CrossRefADSGoogle Scholar
  14. 14.
    A.Yu. Kanunnikov, R.E. Lamper, J. Appl. Mech. Theor. Phys. 44, 748 (2003)CrossRefADSGoogle Scholar
  15. 15.
    J. Pantaleone, Am. J. Phys. 70, 992 (2002)CrossRefADSGoogle Scholar
  16. 16.
    P. Perlikowski, M. Kapitaniak, K. Czolczynski, A. Stefanski, T. Kapitaniak, Int. J. Bif. Chaos 22, 1250288 (2012)CrossRefMathSciNetGoogle Scholar
  17. 17.
    M. Senator, J. Sound Vibr. 291, 566 (2006)CrossRefADSGoogle Scholar
  18. 18.
    H. Ulrichs, A. Mann, U. Parlitz, Chaos 19, 043120 (2009)CrossRefADSGoogle Scholar
  19. 19.
    N. Rott, Z. Angew. Math. Phys. 2l, 570 (1970)CrossRefGoogle Scholar
  20. 20.
    J. Miles, J. Appl. Math. Phys. (ZAMP) 36 (1985)Google Scholar
  21. 21.
    A.C. Skeldon, Phys. Lett. A 166, 224 (1992)CrossRefADSGoogle Scholar
  22. 22.
    A.C. Skeldon, Physica D 75, 541 (1994)CrossRefMATHMathSciNetADSGoogle Scholar
  23. 23.
    S. Samaranayake, A.K. Bajaj, Nonlinear Dyn. 4, 605 (1993)CrossRefGoogle Scholar
  24. 24.
    T. Morbiato, R. Vitaliani, A. Saetta, Comput. Struct. 89, 1649 (2011)CrossRefGoogle Scholar
  25. 25.
    A.P. Willmott, J. Dapena, J. Sports Sci. 30, 369 (2012)CrossRefGoogle Scholar
  26. 26.
    Y. Suzukia, T. Nomuraa, M. Casadiob, P. Morassoc, J. Theor. Biol. 310, 55 (2012)CrossRefGoogle Scholar
  27. 27.
    K.P. Granataa, S.E. Wilsonb, Clinical Biomech. 16, 650 (2001)CrossRefGoogle Scholar
  28. 28.
    A. Fradkov, B. Andrievsky, K. Boykov, Mechatronics 15, 1289 (2005)CrossRefGoogle Scholar
  29. 29.
    E.J. Doedel, A.R. Champneys, T.F. Fairgrieve, Y.A. Kuznetsov, B. Sandstede, X. Wang, Auto 97: continuation and bifurcation software for ordinary differential equations (1998)Google Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • P. Koluda
    • 1
  • P. Perlikowski
    • 1
  • Krzysztof Czolczynski
    • 1
  • T. Kapitaniak
    • 1
  1. 1.Division of Dynamics, Faculty of Mechanical EngineeringLodz University of TechnologyLodzPoland

Personalised recommendations