The European Physical Journal Special Topics

, Volume 223, Issue 8, pp 1549–1560 | Cite as

Parameter adaptation technique for rapid synchronization and secure communication

  • A.K. Mittal
  • A. Dwivedi
  • S. DwivediEmail author
Regular Article Synchronization of Systems and Networks for Communication
Part of the following topical collections:
  1. Chaos, Cryptography and Communications


An effort is made here to show how parameter adaptation can be used for achieving rapid synchronization between two chaotic systems in a time much smaller than the time scale of chaotic oscillations. This rapid synchronization can be used for faster and more secure communication of digital messages. Different symbols of the message are coded by assigning different values to a parameter set. At the receiving end the parameter values quickly adapt to the changing transmitter parameters, thereby permitting the messages to be decoded. The technique presented here is significantly more secure compared to other similar schemes because in our scheme the transmitting parameters change so rapidly that an intruder cannot infer any information about the attractors corresponding to the different parameter values. Another feature, which enhances security, is that a subsystem of the transmitter can be changed, without having to convey this information to the bona fide recipient. Thus for the same plaintext and the same key, several different cipher-texts can be generated. Further, the variables, whose evolution equations contain the coding parameters, are not transmitted.


Chaotic System European Physical Journal Special Topic Switching Time Secure Communication Parameter Adaptation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Fujisaka, T. Yamada, Prog. Theor. Phys. 69, 32 (1983)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    T. Yamada, H. Fujisaka, Prog. Theor. Phys. 70, 1240 (1983)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    T.L. Carroll, L.M. Pecora, IEEE Trans. Cir. Syst. 38, 453 (1991)CrossRefGoogle Scholar
  4. 4.
    L.M. Pecora, T.L. Carroll, Phys. Rev. A. 44, 2374 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    L.M. , Pecora, T.L. Carroll, Phys. Rev. Lett. 64, 821 (1990)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    L.M. Pecora, T.L. Carroll, G.A. Johnson, D.J. Mar, J.F. Heagy, Chaos 7, 520 (1997)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    H. Adloo, M. Roopaei, Nonlin. Dyn. 65, 141 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    M.M. El-Dessoky, M.T. Yassen, Math. Probl. Eng. 2012, 1 (2012)Google Scholar
  9. 9.
    M.-C. Ho, Y.-C. Hung, Z.-Y. Liu, I.-M. Jiang, Phys. Lett. A. 348, 251 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    S. Chen, J. Lu, Chaos, Solitons Fractals 14, 643 (2002)ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    Yu-liang Liu, J. Zhu, Da-wei Ding, J. China Univ. Posts Telecomm. 14(2), 103 (2007)CrossRefGoogle Scholar
  12. 12.
    S. Chen, J. Lu, Phys. Lett. A. 299, 353 (2002)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    S. Vaidyanathan, Int. J. Inf. Sci. Techn. 1, 1 (2011)Google Scholar
  14. 14.
    S. Vaidyanathan, Int. J. Comput. Sci., Eng. Appl. 2, 81 (2012)Google Scholar
  15. 15.
    X. Tan, J. Zhang, Y. Yang, Chaos Solitons Fractals 16, 37 (2003)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    M.T. Yassen, Chaos Solitons Fractals 23, 131 (2005)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    J.-G. Lu, D.J. Hill, IEEE Trans. Circ. Syst. II: Expr. Briefs 55, 586 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    S. Kuntanapreeda, Phys. Lett. A. 373, 2837 (2009)ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    K.M. Cuomo, A.V. Oppenheim, Phys. Rev. Lett. 71, 65 (1993)ADSCrossRefGoogle Scholar
  20. 20.
    L. Kocarev, U. Parlitz, Phys. Rev. Lett. 74, 5028Google Scholar
  21. 21.
    A. Dwivedi, A.K. Mittal, S. Dwivedi, IET Comm. 6, 2016 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    M.P. Kennedy, G. Kolumban, Signal Proc. 80, 1307 (2000)CrossRefzbMATHGoogle Scholar
  23. 23.
    H. Dedieu, M.P. Kennedy, M. Hasler, IEEE Trans. Circ. Syst. II: Analog Digital Signal Proc. 40, 634 (1993)Google Scholar
  24. 24.
    U. Parlitz, L.O. Chua, Lj. Kocarev, K.S. Halle, A. Shang, Int. J. Bifurcation Chaos 2, 973 (1992)ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    G. Kolumban, M.P. Kennedy, L.O. Chua, IEEE Trans. Circ. Syst. I: Fund. Theory Appl. 45, 1129 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    S. Chen, J. Hu, C. Wang, J. Lü, Phys. Lett. A 321, 50 (2004)ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    J. Xu, G. Cai, S. Zheng, Int. J. Nonlinear Sci. 8, 117 (2009)zbMATHMathSciNetGoogle Scholar
  28. 28.
    E.M. Elabbasy, H.N. Agiza, M.M. El-Dessoky, Chaos, Solitons Fractals 30, 1133 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    M. Feki, Chaos, Solitons Fractals 18, 141 (2003)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Y. Song, X. Yu, Proc. 39th IEEE Conf. Dec. Cont. 1, 42 (2000)Google Scholar
  31. 31.
    P. Palaniyandi, M. Lakshmanan, Int. J. Bif. Chaos 17, 4187 (2007)CrossRefzbMATHGoogle Scholar
  32. 32.
    G. Perez, H.A. Cerdeira, Phys. Rev. Lett. 74, 1970 (1995)ADSCrossRefGoogle Scholar
  33. 33.
    T. Yang, L.-B. Yang, C.-M. Yang, Phys. Lett. A. 245, 495 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    S. Gang-Quan, C. Hui, Z. Yan-Bin, Chin. Phys. B. 20, 010509 (2011)CrossRefGoogle Scholar
  35. 35.
    S. Banerjee, P. Saha, A.R. Chowdhury, Phys. Scr. 63, 177 (2001)ADSCrossRefzbMATHGoogle Scholar
  36. 36.
    S.J.S. Theesar, S. Banerjee, P. Balasubramaniam, Phys. Scr. 85, 065010 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  1. 1.Physics Department, University of AllahabadAllahabadIndia
  2. 2.K Banerjee Centre of Atmospheric and Ocean Studies, University of AllahabadAllahabadUPIndia

Personalised recommendations