Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 8, pp 1519–1529 | Cite as

Analysis and adaptive synchronization of eight-term 3-D polynomial chaotic systems with three quadratic nonlinearities

  • S. VaidyanathanEmail author
Regular Article Synchronization of Systems and Networks for Communication
Part of the following topical collections:
  1. Chaos, Cryptography and Communications

Abstract

This paper proposes a eight-term 3-D polynomial chaotic system with three quadratic nonlinearities and describes its properties. The maximal Lyapunov exponent (MLE) of the proposed 3-D chaotic system is obtained as L 1 = 6.5294. Next, new results are derived for the global chaos synchronization of the identical eight-term 3-D chaotic systems with unknown system parameters using adaptive control. Lyapunov stability theory has been applied for establishing the adaptive synchronization results. Numerical simulations are shown using MATLAB to describe the main results derived in this paper.

Keywords

Chaotic System European Physical Journal Special Topic Slave System Quadratic Nonlinearity Maximal Lyapunov Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.N. Lorenz, J. Atmosph. Sci. 20, 130 (1963)CrossRefADSGoogle Scholar
  2. 2.
    O.E. Rössler, Phys. Lett. A 57, 397 (1976)CrossRefADSGoogle Scholar
  3. 3.
    A. Arneodo, P. Coullet, C. Tresser, Commun. Math. Phys. 79, 573 (1981)CrossRefzbMATHMathSciNetADSGoogle Scholar
  4. 4.
    R. Genesio, A. Tesi, Automatica 28, 531 (1992)CrossRefzbMATHGoogle Scholar
  5. 5.
    G. Chen, T. Ueta, Int. J. Bif. Chaos 9, 1465 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    J. Lü, G. Chen, Int. J. Bif. Chaos 12, 659 (2002)CrossRefzbMATHGoogle Scholar
  7. 7.
    H.K. Chen, C.I. Lee, Chaos, Solitons Fractals 21, 957 (2004)CrossRefzbMATHMathSciNetADSGoogle Scholar
  8. 8.
    A.M. Harb, Chaos, Solitons Fractals 19, 1217 (2004)CrossRefzbMATHADSGoogle Scholar
  9. 9.
    G. Tigan, D. Opris, Chaos, Solitons Fractals 36, 1315 (2008)CrossRefzbMATHMathSciNetADSGoogle Scholar
  10. 10.
    Z. Elhadj, J. Syst. Sci. Complex. 21, 67 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Q.C. Yang, G.R. Chen, Int. J. Bifurcat. Chaos 18, 1393 (2008)CrossRefzbMATHGoogle Scholar
  12. 12.
    J. Wang, Z. Chen, Z. Yuan, Chaos, Solitons Fractals 42, 3053 (2009)CrossRefzbMATHADSGoogle Scholar
  13. 13.
    J. Zhang, W. Tang, Chaos, Solitons Fractals 42, 2181 (2009)CrossRefzbMATHADSGoogle Scholar
  14. 14.
    V. Sundarapandian, I. Pehlivan, Math. Computer Modell. 55, 1904 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    V. Sundarapandian, Far East J. Math. Sci. 79, 135 (2013)zbMATHGoogle Scholar
  16. 16.
    J. Wang, G. Feng, Int. J. Nonlinear Mech. 45, 608 (2010)CrossRefADSGoogle Scholar
  17. 17.
    A. Fichera, C. Losenno, A. Pagano, Appl. Energy 69, 101 (2001)CrossRefGoogle Scholar
  18. 18.
    M. Inoue, A. Nagayoshi, Phys. Lett. A 158, 373 (1991)CrossRefADSGoogle Scholar
  19. 19.
    Y. Nakamura, A. Sekiguchi, IEEE Trans. Robo. Automat. 17, 898 (2001)CrossRefGoogle Scholar
  20. 20.
    M. Feki, Chaos, Solitons Fractals 18, 141 (2003)CrossRefzbMATHMathSciNetADSGoogle Scholar
  21. 21.
    Y. Wang, X. Liao, T. Xiang, K. Wong, D. Yang, Phy. Lett. A 363, 277 (2007)CrossRefzbMATHADSGoogle Scholar
  22. 22.
    V. Petrov, V. Gaspar, J. Masere, K. Showalter, Nature 361, 240 (1993)CrossRefADSGoogle Scholar
  23. 23.
    F. Li, J.N. Kutz, P.K.A. Wai, Opt. Comm. 285, 2144 (2012)CrossRefADSGoogle Scholar
  24. 24.
    J.C. Sprott, Phys. Rev. E 50, 647 (1994)CrossRefMathSciNetADSGoogle Scholar
  25. 25.
    C. Hua, B. Yang, G. Ouyang, X. Guan, Phys. Lett. A 342, 305 (2005)CrossRefzbMATHADSGoogle Scholar
  26. 26.
    S. Bowong, F.M.M. Kakmeni, M.S. Siewe, Comm. Nonlinear Sci. Num. Simul. 12, 397 (2007)CrossRefzbMATHADSGoogle Scholar
  27. 27.
    W.D. Chang, Digital Signal Proc. 19, 693 (2009)CrossRefGoogle Scholar
  28. 28.
    H. Dimassi, A. Loria, S. Belghith, Comm. Nonlinear Sci. Num. Simul. 17, 3727 (2012)CrossRefzbMATHADSGoogle Scholar
  29. 29.
    C.J. Cheng, Appl. Math. Comput. 219, 2698 (2012)CrossRefMathSciNetGoogle Scholar
  30. 30.
    A. Abdullah, Appl. Math. Comput. 219, 10000 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    G. Alvarez, F. Montoya, M. Romera, G. Pastor, Chaos, Solitons Fractals 21, 689 (2004)CrossRefzbMATHADSGoogle Scholar
  32. 32.
    J.S. Lin, C.F. Huang, T.L. Liao, J.J. Yan, Digital Signal Proc. 20, 229 (2010)CrossRefGoogle Scholar
  33. 33.
    K. Fallahi, H. Leung, Comm. Nonlinear Sci. Num. Sim. 15, 368 (2010)CrossRefzbMATHADSGoogle Scholar
  34. 34.
    W.T. Zhu, J. Network Comput. Appl. 36, 178 (2013)CrossRefGoogle Scholar
  35. 35.
    C.K. Volos, I.M. Kyprianidis, I.N. Stouboulos, Signal Proc. 93, 1328 (2013)CrossRefGoogle Scholar
  36. 36.
    M.T. Yassen, Chaos, Solitons Fractals 23, 131 (2005)CrossRefzbMATHMathSciNetADSGoogle Scholar
  37. 37.
    R.A. Tang, Y.L. Liu, J.K. Xue, Phy. Lett. A 373, 1449 (2009)CrossRefzbMATHMathSciNetADSGoogle Scholar
  38. 38.
    X. Wu, G. Chen, J. Cai, Physica D: Nonlinear Phenom. 229, 52 (2007)CrossRefzbMATHMathSciNetADSGoogle Scholar
  39. 39.
    C.C. Wang, J.P. Su, Chaos, Solitons Fractals 20, 967 (2004)CrossRefzbMATHMathSciNetADSGoogle Scholar
  40. 40.
    Y. Sun, J. Cao, G. Feng, Phys. Lett. A 372, 5442 (2008)CrossRefzbMATHMathSciNetADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  1. 1.Vel Tech University, Research and Development Centre, AvadiTamil NaduIndia

Personalised recommendations