The European Physical Journal Special Topics

, Volume 223, Issue 3, pp 591–608 | Cite as

Colloids as model systems for metals and alloys: a case study of crystallization

  • D.M. Herlach
Part of the following topical collections:
  1. Heterogenous Nucleation and Microstructure Formation: Steps Towards a System and Scale Bridging Understanding


Metallic systems are widely used as materials in daily human life. Their properties depend very much on the production route. In order to improve the production process and even develop novel materials a detailed knowledge of all physical processes involved in crystallization is mandatory. Atomic systems like metals are characterized by very high relaxation rates, which make direct investigations of crystallization very difficult and in some cases impossible. In contrast, phase transitions in colloidal systems are very sluggish and colloidal suspensions are optically transparent. Therefore, colloidal systems are often discussed as model systems for metals. In the present work, we study the crystallization process of charged colloidal systems from the very beginning. Charged colloids offer the advantage that the interaction potential can be systematically tuned by a variation of the particle number density and the salt concentration. We apply light scattering and ultra-small angle x-ray scattering to investigate the formation of short-range order in the liquid state even far from equilibrium, crystal nucleation and crystal growth. The results are compared with equivalent studies on metallic systems.


Interfacial Energy European Physical Journal Special Topic Nucleation Rate Colloidal Suspension Colloidal System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.M. Herlach, P. Galenko, D. Holland-Moritz, Metastable Solids from Undercooled Melts, edited by R. Cahn (Pergamon Materials Series, 2007)Google Scholar
  2. 2.
    K.F. Kelton, A.L. Greer, Nucleation (Pergamon Materials Series, 2009)Google Scholar
  3. 3.
    A. Sood, Solid State Phys. 45, 1 (1995)Google Scholar
  4. 4.
    W. Stöber, A. Fink, E. Bohn, J. Coll. Interface Sci. 26, 62 (1968)CrossRefGoogle Scholar
  5. 5.
    D.M. Herlach, I. Klassen, P. Wette, D. Holland-Moritz, J. Phys.: Condens. Matter 22, 153102 (2010)ADSGoogle Scholar
  6. 6.
    P. Wette, Ph.D. thesis, University Mainz, 2006Google Scholar
  7. 7.
    H.J. Schöpe, T. Palberg, J. Coll. Interf. Sci. 234, 149 (2001)CrossRefGoogle Scholar
  8. 8.
    P. Wette, A. Engelbrecht, R. Salh, I. Klassen, D. Menke, D.M. Herlach, S.V. Roth, H.J. Schöpe, J. Phys.: Condens. Matter 21, 464115 (2009)ADSGoogle Scholar
  9. 9.
    I. Klassen, Ph.D. thesis, Ruhr-University Bochum, 2009Google Scholar
  10. 10.
    S.V. Roth, et al., Rev. Sci. Instr. 77, 085106 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    N. Lorenz, H.J. Schöpe, H. Reiber, T. Palberg, P. Wette, I. Klassen, D.M. Herlach, T. Okubo, J. Phys. Condens. Matter 21, 464116 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    M. Würth, J. Schwarz, F. Culis, P. Leiderer, T. Paberg, Phys. Rev. E 52, 6415 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Monovoukas, A.P. Gast, Langmuir 7, 460 (1991)CrossRefGoogle Scholar
  14. 14.
    G. Pan, A.K. Sood, A.S. Asher, J. Appl. Phys. 84, 83 (1998)ADSCrossRefGoogle Scholar
  15. 15.
    P. Wette, H.J. Schöpe, T. Palberg, J. Chem. Phys. 123, 174902 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    D.J.W. Aastuen, N.A. Clark, L.K. Cottes, B.J. Ackerson, Phys. Rev. Lett. 57, 2772 (1986)ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    T. Palberg, J. Phys. Condens. Matter 11, 323 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    A. Stipp, Ph.D. thesis, Johannes Gutenberg University Mainz, 2005Google Scholar
  19. 19.
    J.Q. Broughton, G.H. Gilmer, A.K. Jackson, Phys. Rev. Lett. 49, 1496 (1982)ADSCrossRefGoogle Scholar
  20. 20.
    P. Wette, H.J. Schöpe, T. Palberg, J. Chem. Phys. 116, 10981 (2002)ADSCrossRefGoogle Scholar
  21. 21.
    V. Simonet, Ph.D. Thesis, Université de Paris-Sud U.F.R. Scientifique d'Orsay, France, 1998Google Scholar
  22. 22.
    V. Simonet, F. Hippert, H. Klein, M. Audier, R. Bellissent, H. Fisher, A.P. Murani, D. Boursier, Phys. Rev. B 58, 6273 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    V. Simonet, F. Hippert, M. Audier, R. Bellissent, Phys. Rev. B 65, 024203 (2001)ADSCrossRefGoogle Scholar
  24. 24.
    T. Schenk, D. Holland-Moritz, V. Simonet, R. Bellisent, D.M. Herlach, Phys. Rev. Lett. 89, 075507 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    K.F. Kelton, G.W. Lee, A.K. Gangopadhyay, R.W. Hyers, T. Rathz, J. Rogers, M.B. Robinson, D. Robinson, Phys. Rev. Lett. 90, 195504 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    D.R. Nelson, F. Spaepen, Solid State Phys. 42, 1 (1989)Google Scholar
  27. 27.
    D. Holland-Moritz, T. Schenk, R. Bellissent, V. Simonet, K. Funakoshi, J.M. Merino, T. Buslaps, S. Reutzel, J. Non-Crystal. Solids 312, 47 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    G.W. Lee, A.K. Gangopadhyay, K.F. Kelton, R.W. Hyers, T.J. Rathz, J.R. Rogers, D.S. Robinson, Phys. Rev. Lett. 93, 037802 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    D. Holland-Moritz, T. Schenk, V. Simonet, R. Bellissent, P. Couvert, T. Hansen, J. Alloys Comp. 342, 77 (2002)CrossRefGoogle Scholar
  30. 30.
    H. Jonsson, H.C. Andersen, Phys. Rev. Lett. 60, 2295 (1988)ADSCrossRefGoogle Scholar
  31. 31.
    J.D. Weeks, D. Chandler, H.C. Andersen, J. Chem. Phys. 54, 5237 (1971)ADSCrossRefGoogle Scholar
  32. 32.
    J.L. Harland, W. van Megen, Phys. Rev. E 55, 3054 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    K.M. Dobrich, C. Rau, C.E. Krill, Metall. Mater. Trans. A 35, 1953 (2004)CrossRefGoogle Scholar
  34. 34.
    J.W. Christian, The Theory of Transformations in Metals and Alloys, Chapter 10 (Pergamon, Oxford, 1975)Google Scholar
  35. 35.
    D. Turnbull, J.C. Fisher, J. Chem. Phys. 17, 71 (1949)ADSCrossRefGoogle Scholar
  36. 36.
    P. Wette, H.J. Schöpe, Phys. Rev. E 75, 051405 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    V.J. Anderson, H.N.W. Lekkerkerker, Nature 416, 811 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    W. van Megen, Transport Theory Stat. Phys. 24, 1017 (1995)ADSCrossRefGoogle Scholar
  39. 39.
    D. Kashchiev, Surf. Sci. 14, 209 (1969)ADSCrossRefGoogle Scholar
  40. 40.
    D. Turnbull, J. Chem. Phys. 20, 411 (1952)ADSCrossRefGoogle Scholar
  41. 41.
    D. Turnbull, R.E. Cech, J. Appl. Phys. 21, 804 (1950)ADSCrossRefGoogle Scholar
  42. 42.
    D. Turnbull, J. Appl. Phys. 21, 1022 (1950)ADSCrossRefGoogle Scholar
  43. 43.
    S. Klein, D. Holland-Moritz, D.M. Herlach, Phys. Rev. B 80, 212202 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    F. Spaepen, Acta Metall. 23, 729 (1975)CrossRefGoogle Scholar
  45. 45.
    F. Spaepen, R.B. Meyer, Scripta Metall. 10, 257 (1976)CrossRefGoogle Scholar
  46. 46.
    C.V. Thompson, Ph.D. Thesis, Harvard University, 1979Google Scholar
  47. 47.
    D. Holland-Moritz, Int. J. Non-Equilibrium Proc. 11, 169 (1998)Google Scholar
  48. 48.
    N.D. Mermin, Phys. Rev. A 127, 1509 (1965)MathSciNetGoogle Scholar
  49. 49.
    J.K. Percus, G.J. Yevick, Phys. Rev. 110, 1 (1958)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  50. 50.
    J.Q. Broughton, G.H. Gilmer, J. Phys. Chem. 84, 5749 (1986)CrossRefGoogle Scholar
  51. 51.
    R.L. Davidchack, B.B. Laird, Phys. Rev. Lett. 85, 4751 (2000)ADSCrossRefGoogle Scholar
  52. 52.
    J.J. Hoyt, M. Asta, A. Karma, Phys. Rev. Lett. 86, 5530 (2001)ADSCrossRefGoogle Scholar
  53. 53.
    J.J. Hoyt, M. Asta, T. Haxhimali, A. Karma, R.E. Napolitano, R. Trivedi, B.B. Laird, J.R. Morris, MRS Bull. 29, 935 (2004)CrossRefGoogle Scholar
  54. 54.
    F.C. Frank, Proc. Royal Soc. London 215, 43 (1952)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  1. 1.Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR)KölnGermany

Personalised recommendations