The European Physical Journal Special Topics

, Volume 223, Issue 3, pp 567–590 | Cite as

Investigation of Al-Cu-Ni alloy solidification: thermodynamics, experiments and phase-field modeling

  • J. Kundin
  • P. Wang
  • H. Emmerich
  • R. Schmid-Fetzer
Part of the following topical collections:
  1. Heterogenous Nucleation and Microstructure Formation: Steps Towards a System and Scale Bridging Understanding


The investigation of solidification in ternary Al-Cu-Ni alloys is carried out by means of experiments and phase-field modeling. For three alloys in the Al-rich corner of the phase diagram differential thermal analysis (DTA) is performed. Then the alloys were analyzed using scanning electron microscopy with energy dispersive X-ray microanalysis. For the understanding of the general features of the alloy solidification quantitative phase-field simulations are carried out additionally to the theoretical Scheil calculation. It is found that many experimental DTA signals and the microstructure parts cannot be explained by simple Scheil calculation. We apply the multi-phase-field model previously developed for the simulation of peritectic reaction and extended it to three components and four-phases reactions. The main advantage of this model is the application of the equilibrium parameters evaluated from the refined free energies of the phases. It is shown that the simulated microstructure is comparable to the experimental one for two investigated alloys. The final phase fractions in the modeling correspond to the theoretical predictions of Scheil calculation but the time evolution of fractions is more complicated. In particular the kinetics (relation between tangential and normal growth velocities) of the peritectic-like reaction in ternary Al-Cu-Ni alloys shows differences compared to the peritectic reaction in binary Al-Ni alloys.


European Physical Journal Special Topic Phase Fraction Free Energy Function Liquidus Surface Projection Scheil Calculation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Kundin, H.-L. Chen, H. Emmerich, R. Schmid-Fetzer, Eur. Phys. J. Plus 126, 96 (2011)CrossRefGoogle Scholar
  2. 2.
    I. Steinbach, F. Pezolla, Physica D 154, 468 (1999)zbMATHGoogle Scholar
  3. 3.
    B. Nestler, A.A. Wheeler, Physica D 138, 114 (2000)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    M. Apel, B. Boettger, H.-J. Diepers, I. Steinbach, J. Cryst. Growth 237, 154 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    S.G. Kim, W.T. Kim, T. Suzuki, M. Ode, J. Crist. Growth 261, 135 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    U. Hecht, L. Grnsy, T. Pusztai, B. Böttger, M. Apel, V. Witusiewicz, L. Ratke, J. De Wilde, L. Froyen, D. Camel, B. Drevet, G. Faivre, S.G. Fries, B. Legendre, S. Rex, Mater. Sci. Eng. Reports 1/2 46, 1 (2004)CrossRefGoogle Scholar
  7. 7.
    B. Nestler, H. Garcke, B. Stinner, Phys. Rev. E 71, 041609 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    R. Folch, M. Plapp, Phys. Rev. E 72, 011602 (2005)ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    J. Kundin, R. Siquieri, Physica D 240, 459 (2011)ADSCrossRefzbMATHGoogle Scholar
  10. 10.
    J. Kundin, R. Siquieri, H. Emmerich, Physica D 243, 116 (2013)ADSCrossRefzbMATHGoogle Scholar
  11. 11.
    E. Pogorelov, J. Kundin, H. Emmerich [arXiv 1304.6549] (2013)
  12. 12.
    E. Scheil, Z. Metallkde 34, 70 (1942)Google Scholar
  13. 13.
    G.H. Gulliver, J. Inst. Metals 9, 120 (1913)Google Scholar
  14. 14.
    M.E. Glicksman, Principles of Solidification: An Introduction to Modern Casting and Crystal Growth Concepts (Springer, New York, 2011)Google Scholar
  15. 15.
    W. Cao, S. Chen, F. Zhang, K. Wu, Y. Yang, Y. Chang, R. Schmid-Fetzer, W.A. Oates, Calphad 33, 328 (2009)CrossRefGoogle Scholar
  16. 16.
    J.-O. Andersson, T. Helander, L. Hglund, P. Shi, B. Sundman, Calphad 26, 273 (2002)CrossRefGoogle Scholar
  17. 17.
    C.W. Bale, E. Blisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melanon, A.D. Pelton, C. Robelin, S. Petersen, Calphad 33 295 (2009)CrossRefGoogle Scholar
  18. 18.
    A. Prince, K.C. Hari Kumar, Aluminium – Copper – Nickel, edited by G. Effenberg, S. Ilyenko, Landolt-Brnstein – Group IV Physical Chemistry 11A2, 104 (2005)Google Scholar
  19. 19.
    N. Saunders, Al-Cu, edited by I. Ansara, A.T. Dinsdale, M.H. Rand, COST 507–Thermochemical database for light metal alloys. Luxembourg: Office for Official Publ. Eur. Comm. 2, 28 (1998)Google Scholar
  20. 20.
    N. Dupin, I. Ansara, B. Sundman, Calphad 25, 279 (2001)CrossRefGoogle Scholar
  21. 21.
    S. An Mey, Cu-Ni, edited by I. Ansara, A.T. Dinsdale, M.H. Rand, COST 507–Thermochemical database for light metal alloys. Luxembourg: Office for Official Publ. Eur. Comm. 2, 175 (1998)Google Scholar
  22. 22.
    E.A. Brener, G. Boussinot, Phys. Rev. E 86, 060601 (2012)ADSCrossRefGoogle Scholar
  23. 23.
    G. Boussinot, E.A. Brener, Phys. Rev. E 88, 022406 (2013)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • J. Kundin
    • 1
  • P. Wang
    • 2
  • H. Emmerich
    • 1
  • R. Schmid-Fetzer
    • 2
  1. 1.Material and Process Simulation (MPS), University BayreuthBayreuthGermany
  2. 2.Institute of Metallurgy, Clausthal University of TechnologyClausthal-ZellerfeldGermany

Personalised recommendations