The European Physical Journal Special Topics

, Volume 223, Issue 3, pp 511–526 | Cite as

Nucleation barriers for the liquid-to-crystal transition in simple metals: Experiment vs. simulation

  • J. Bokeloh
  • G. Wilde
  • R.E. Rozas
  • R. Benjamin
  • J. Horbach
Regular Article
Part of the following topical collections:
  1. Heterogenous Nucleation and Microstructure Formation: Steps Towards a System and Scale Bridging Understanding


Crystal nucleation in the one-component metals Ni and Au is investigated using a combination of differential thermal analysis (DTA) experiments and Monte Carlo (MC) simulations. A novel experimental methodology allows to measure nucleation rates J over a range of 8 orders of magnitude. Evidence is given that these rates correspond to homogeneous nucleation. From the nucleation rates, free energy nucleation barriers ΔG are extracted using an ansatz obtained in the framework of classical nucleation theory (CNT). The latter ansatz is rationalized by MC simulations that directly yield estimates for the temperature dependence of ΔG . The values of ΔG , as determined from the simulation, are in very good agreement with those extracted from the experiments. The simulations indicate that in the range where experiments are available the corrections to CNT are relatively small, thus justifying the application of CNT. We also discuss how the conditions for heterogeneous nucleation on a flat or structured wall can be obtained from computer simulations.


Monte Carlo European Physical Journal Special Topic Nucleation Rate Homogeneous Nucleation Microstructure Formation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ya.I. Frenkel, Kinetic Theory of Liquids (Oxford University Press, Oxford, 1946)Google Scholar
  2. 2.
    M. Volmer, Kinetik der Phasenbildung (Th. Steinkopff, Dresden, 1939)Google Scholar
  3. 3.
    K.F. Kelton, A.L. Greer, Nucleation in Condensed Matter – Applications in Materials and Biology (Elsevier, Amsterdam, 2010)Google Scholar
  4. 4.
    D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, 2nd edition (Academic Press, San Diego, 2001)Google Scholar
  5. 5.
    S.M. Foiles, Phys. Rev. B 32, 3409 (1985)ADSCrossRefGoogle Scholar
  6. 6.
    D. Turnbull, J. Appl. Phys. 21, 1022 (1950)ADSCrossRefGoogle Scholar
  7. 7.
    F. Spaepen, Solid State Phys. 47, 1 (1994)Google Scholar
  8. 8.
    R.E. Rozas, J. Horbach, EPL 93, 26006 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    J. Bokeloh, R.E. Rozas, J. Horbach, G. Wilde, Phys. Rev. Lett. 107, 145701 (2011)ADSCrossRefGoogle Scholar
  10. 10.
    S. Klein, D. Holland-Moritz, D.M. Herlach, Phys. Rev. B 80, 212202 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    M.J. Uttormark, J.W. Zanter, J.H. Perepezko, J. Cryst. Growth 177, 258 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    B. Yang, A.S. Abyzov, E. Zhuravlev, Y. Gao, J.W.P. Schmelzer, C. Schick, J. Chem. Phys. 138, 054501 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    G. Wilde, J.L. Sebright, J.H. Perepezko, Acta Mater. 54, 4759 (2006)CrossRefGoogle Scholar
  14. 14.
    G. Wilde, C. Santhaweesuk, J.L. Sebright, J. Bokeloh, J.H. Perepezko, J. Phys.: Condens. Matter 21, 464113 (2009)ADSGoogle Scholar
  15. 15.
    T. Schenk, D. Holland-Moritz, W. Bender, D.M. Herlach, J. Non-Cryst. Solids 250, 694 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    V.P. Skripov, in Current Topics in Materials Science, Crystal Growth and Materials, edited by E. Kaldis, H. Scheel, Vol. 2 (North Holland, Amsterdam, 1977), p. 328Google Scholar
  17. 17.
    D. Herlach, Mat. Sci. Eng. R12, 177 (1994)CrossRefGoogle Scholar
  18. 18.
    E.A. Gehan, J. Chron. Dis. 21, 629 (1969)CrossRefGoogle Scholar
  19. 19.
    J. Bokeloh, High-precision nucleation rate measurements of glass-fluxed pure gold, copper, nickel and cobalt samples and of an AuSi-based bulk metallic glass-former, Ph.D. thesis, Münster, 2013Google Scholar
  20. 20.
    S. Auer, D. Frenkel, Nature 409, 1020 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    S. Auer, D. Frenkel, Nature 413, 711 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    P.R. Ten Wolde, M.J. Ruiz-Montero, D. Frenkel, Phys. Rev. Lett. 75, 2714 (1995)ADSCrossRefGoogle Scholar
  23. 23.
    S. Auer, D. Frenkel, Ann. Rev. Phys. Chem. 55, 333 (2004)ADSCrossRefGoogle Scholar
  24. 24.
    P.J. Steinhardt, D.R. Nelson, M. Ronchetti, Phys. Rev. B 28, 784 (1983)ADSCrossRefGoogle Scholar
  25. 25.
    A. Meyer, S. Stüber, D. Holland-Moritz, O. Heinen, T. Unruh, Phys. Rev. B 77, 092201 (2008)ADSCrossRefGoogle Scholar
  26. 26.
    H.B. Singh, A. Holz, Solid State Comm. 45, 985 (1983)ADSCrossRefGoogle Scholar
  27. 27.
    G. Wilde, C. Mitsch, G.P. Gorler, R. Willnecker, J. Non-Cryst. Solids 205, 425 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    D. Turnbull, J.C. Fisher, J. Chem. Phys. 17, 71 (1949)ADSCrossRefGoogle Scholar
  29. 29.
    T. Zykova-Timan, R.E. Rozas, J. Horbach, K. Binder, J. Phys.: Condens. Matter 21, 464102 (2009)ADSGoogle Scholar
  30. 30.
    B.J. Block, S.K. Das, M. Oettel, P. Virnau, K. Binder, J. Chem. Phys. 133, 154702 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    W.J. Boettinger, J.H. Perepezko, in Rapidly Solidified Crystalline Alloys, edited by S.K. Das, B.H. Kear, C.M. Adam (TMS-AIME, Warrendale, PA, 1985), p. 21Google Scholar
  32. 32.
    G.M. Pound, V.K. La Mer, J. Am. Chem. Soc. 74, 2323 (1952)CrossRefGoogle Scholar
  33. 33.
    T. Young, Phil. Trans. R. Soc. 95, 65 (1805)CrossRefGoogle Scholar
  34. 34.
    R. Benjamin, J. Horbach, J. Chem. Phys. 137 044707 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    R. Benjamin, J. Horbach, J. Chem. Phys. 139 039901 (2013)ADSCrossRefGoogle Scholar
  36. 36.
    R. Benjamin, J. Horbach, J. Chem. Phys. 139 084705 (2013)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  • J. Bokeloh
    • 1
  • G. Wilde
    • 1
  • R.E. Rozas
    • 2
  • R. Benjamin
    • 2
  • J. Horbach
    • 2
  1. 1.Institut für Materialphysik, Westfälische Wilhelms-Universität MünsterMünsterGermany
  2. 2.Institut für Theoretische Physik II, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1DüsseldorfGermany

Personalised recommendations