The European Physical Journal Special Topics

, Volume 223, Issue 3, pp 497–509 | Cite as

A phase field crystal study of heterogeneous nucleation – application of the string method

  • R. BackofenEmail author
  • A. Voigt
Regular Article Metals as Model Systems
Part of the following topical collections:
  1. Heterogenous Nucleation and Microstructure Formation: Steps Towards a System and Scale Bridging Understanding


We use the simplified string method in order to examine two dimensional heterogeneous nucleation at a wall and on a substrate. The material is described by a phase field crystal model and the influence of the wall or substrate is included by an external potential. Tuning the external potential we show that we can control the contact angle in equilibrium and misfit to a substrate. The nucleation barrier is reduced by a wall, but cannot be explained by classical nucleation theory due to non-classical nucleation paths. For small misfits a substrate also decreases the nucleation barrier, while large misfits increases the nucleation barrier.


Contact Angle European Physical Journal Special Topic Liquid Phase Epitaxy External Potential Thermodynamic Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. Fisher, W. Kurz, Fundamentals of Solidification (Trans. Tech, Uetikon-Zürich, 1986)Google Scholar
  2. 2.
    C. Herring, The Physics of Powder Metallurgy (McGraw-Hill, New York, 1951)Google Scholar
  3. 3.
    L. Gránásy, T. Pusztai, G. Tóth, Z. Jurek, M. Conti, B.R. Kvamme, J. Chem. Phys. 119, 10376 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    L. Gránásy, T. Pusztai, D. Saylor, J. Warren, Phys. Rev. Lett. 98, 1 (2007)CrossRefGoogle Scholar
  5. 5.
    J.A. Warren, T. Pusztai, L. Környei, L. Gránásy, M. Cheng, Phys. Rev. B 79, 1 (2009)CrossRefGoogle Scholar
  6. 6.
    J.F. Lutsko, Phys. Rev. E 74, 1 (2006)MathSciNetGoogle Scholar
  7. 7.
    J. Krug, Phys. A 313, 47 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    P. Politi, C. Castellano, Phys. Rev. E 66, 031605 (2002)ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    R. Backofen, A. Voigt, J. Cryst. Growth 303, 100 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    P. Otto, F. Penzler, A. Rätz, T. Rump, A. Voigt, Nonlinearity 17, 477 (2004)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    A. Redinger, O. Ricken, P. Kuhn, A. Rätz, A. Voigt, J. Krug, T. Michely, Phys. Rev. Lett. 100, 1 (2008)CrossRefGoogle Scholar
  12. 12.
    K. Elder, M. Katakowski, M. Haataja, M. Grant, Phys. Rev. Lett. 88(24), 245701 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    K. Elder, M. Grant, Phys. Rev. E 70, 051605 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    K.R. Elder, N. Provatas, J. Berry, P. Stefanovic, M. Grant, Phys. Rev. B 75, 1 (2007)CrossRefGoogle Scholar
  15. 15.
    S.V. Teeffelen, R. Backofen, A. Voigt, H. Löwen, Phys. Rev. E 79, 1 (2009)Google Scholar
  16. 16.
    H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G.I. Tóth, G. Tegze, L. Gránásy, Adv. Phys. 61, 665 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    H. Emmerich, L. Gránásy, H. Löwen, Eur. Phys. J. Plus 126(10), 1 (2011)Google Scholar
  18. 18.
    A. Jaatinen, T. Ala-Nissila, Phys. Rev. E 82, 1 (2010)CrossRefGoogle Scholar
  19. 19.
    K.A. Wu, A. Karma, J. Hoyt, M. Asta, Phys. Rev. B 73, 1 (2006)zbMATHGoogle Scholar
  20. 20.
    L. Gránásy, G. Tegze, G.I. Tóth, T. Pusztai, Philosophical Mag. 91, 123 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    G.I. Tóth, G. Tegze, T. Pusztai, G. Tóth, L. Gránásy, J. Phys.: Cond. Matter 22, 364101 (2010)Google Scholar
  22. 22.
    R. Prieler, J. Hubert, D. Li, B. Verleye, R. Haberkern, H. Emmerich, J. Phys.: Cond. Matter 21, 464110 (2009)ADSGoogle Scholar
  23. 23.
    D. Sheppard, R. Terrell, G. Henkelman, J. Chem. Phys. 128, 134106 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    G. Henkelman, H. Jónsson, H. Jo, J. Chem. Phys. 113, 9978 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    E. Vanden-Eijnden, M. Venturoli, J. Chem. Phys. 130, 194103 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    W. Ren, E. Vanden-Eijnden, W.E., Phys. Rev. B 66, 5 (2002)Google Scholar
  27. 27.
    R. Backofen, A. Voigt, J. Phys.: Cond. Matter 22, 364104 (2010)ADSGoogle Scholar
  28. 28.
    W. Ren, E. Vanden-Eijnden, J. Chem. Phys. 126, 164103 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    J. Dzubiella, C. Likos, J. Phys.: Cond. Matter 15, 147 (2003)ADSGoogle Scholar
  30. 30.
    S. Praetorius, A. Voigt, Macromol. Theory Simul. 20, 541 (2011)CrossRefGoogle Scholar
  31. 31.
    R. Backofen, A. Rätz, A. Voigt, A. Rätz, Philosophical Mag. Lett. 87, 813 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    S. Vey, A. Voigt, Comput. Vis. Sci. 10, 57 (2007)CrossRefMathSciNetGoogle Scholar
  33. 33.
    D. Mumford, J. Shah, Comm. Pure Appl. Math. 42, 577 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    B. Berkels, A. Rätz, M. Rumpf, A. Voigt, J. Sci. Comput. 35, 1 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    R. Backofen, A. Voigt, J. Phys.: Cond. Matter 21, 464109 (2009)ADSGoogle Scholar
  36. 36.
    Y.M. Yu, R. Backofen, A. Voigt, J. Crystal Growth 318, 18 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    A. Jaatinen, C.V. Achim, K.R. Elder, T. Ala-Nissila, Phys. Rev. E 80, 1 (2009)CrossRefGoogle Scholar
  38. 38.
    Y.-M. Yu, A. Voigt, Appl. Phys. Lett. 94, 043108 (2009)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  1. 1.Institut für Wissenschaftliches RechnenTU DresdenGermany

Personalised recommendations