Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 3, pp 481–495 | Cite as

Computer simulation of heterogeneous nucleation on curved surfaces using a simplified string method combined with phase-field simulations

  • H. Hörstermann
  • J. Kundin
  • H. Emmerich
Review
Part of the following topical collections:
  1. Heterogenous Nucleation and Microstructure Formation: Steps Towards a System and Scale Bridging Understanding

Abstract

We show how the combination of string method with the phase-field approach can be extended from simulations of homogeneous nucleation to heterogeneous nucleation. From these simulations, it is possible to directly obtain nucleation barriers for heterogeneous nucleation on arbitrary surfaces as well as information about the size and shape of the critical nucleus. We test the method by comparing the dependence of the nucleation barrier for heterogeneous nucleation on concave and convex surfaces on the surface curvature obtained from three-dimensional phase-field simulations with predictions from classical nucleation theory and find good agreement between them.

Keywords

Contact Angle Saddle Point European Physical Journal Special Topic Heterogeneous Nucleation Homogeneous Nucleation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Zhang, L.-Q. Chen, Q. Du, Phys. Rev. Lett. 98, 265703 (2007)ADSCrossRefGoogle Scholar
  2. 2.
    A. Karma, W.J. Rappel, Phys. Rev. E 57, 4323 (1998)ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    J.J. Hoyt, M. Asta, A. Karma, Mater. Sci. Eng. R. 41, 121 (2003)CrossRefGoogle Scholar
  4. 4.
    L. Gránásy, T. Pusztai, J.A. Warren, J. Phys.: Condens. Matter 16, R1205 (2004)ADSGoogle Scholar
  5. 5.
    R. Folch, M. Plapp, Phys. Rev. E 72, 011602 (2005)ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    H. Emmerich, Adv. Phys. 57, 1 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    Y. Wang, J. Li, Acta Mater. 58, 1212 (2010)CrossRefGoogle Scholar
  8. 8.
    P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations (American Mathematical Society, Providence, RI, 1986)Google Scholar
  9. 9.
    Y. Li, J. Zhou, SIAM J. Sci. Comput. 23, 840 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    I. Ionova, E. Carter, J. Chem. Phys. 98, 6377 (1993)ADSCrossRefGoogle Scholar
  11. 11.
    R.A. Olsen, G.J. Kroes, G. Henkelman, A. Arnaldsson, H. Jónsson, J. Chem. Phys. 121, 9776 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    W.E.W. Ren, E. Vanden-Eijnden, Phys. Rev. B 66, 052301 (2002)ADSGoogle Scholar
  13. 13.
    W.E.W. Ren, E. Vanden-Eijnden, J Chem. Phys. 126, 164103 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    S. Fischer, M. Karplus, Chem. Phys. Lett. 194, 252 (1992)ADSCrossRefGoogle Scholar
  15. 15.
    R. Backofen, A. Voigt, J. Phys.: Condens. Matter 22, 364104 (2010)ADSGoogle Scholar
  16. 16.
    L. Zhang, L.-Q. Chen, Q. Du, Commun. Comput. Phys. 7, 674 (2010)Google Scholar
  17. 17.
    G. Mills, H. Jónsson, Phys. Rev. Lett. 72, 1124 (1994)ADSCrossRefGoogle Scholar
  18. 18.
    G. Mills, H. Jónsson, G.K. Schenter, Surf. Sci. 324, 305 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    G. Henkelman, H. Jónsson, J. Chem. Phys. 113, 9978 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    G. Henkelman, B. Uberuaga, H. Jónsson, J. Chem. Phys. 113, 9901 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    C. Shen, J. Lu, Y. Wang, Metall. Mater. Trans. A 39, 976 (2008)CrossRefGoogle Scholar
  22. 22.
    N.H. Fletcher, J. Chem. Phys. 29, 572 (1958)ADSCrossRefGoogle Scholar
  23. 23.
    M. Lazaridis, M. Kulmala, B.Z. Gorbunov, J. Aerosol Sci. 23 457 (1992)CrossRefGoogle Scholar
  24. 24.
    X.Y. Liu, J. Chem. Phys. 111, 1628 (1999)ADSCrossRefGoogle Scholar
  25. 25.
    J.S. van Duijneveldt, D. Frenkel, J. Chem. Phys. 96, 4655 (1992)ADSCrossRefGoogle Scholar
  26. 26.
    P.R. ten Wolde, D. Frenkel, J. Chem. Phys. 109, 9901 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    R. Blaak, S.Auer, D. Frenkel, H. Loewen, J. Phys.: Condens. Matter 16, 3873 (2004)ADSGoogle Scholar
  28. 28.
    S.Auer, D. Frenkel, Phys. Rev. Lett. 91, 015703 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    D. Winter, P. Virnau, K. Binder, Phys. Rev. Lett. 103, 225703 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    G. Karl, H. Loewen, J. Phys.: Condens. Matter 21, 464101 (2009)ADSGoogle Scholar
  31. 31.
    L. Gránásy, T. Pusztai, D. Sailor, J.A. Warren, Phys. Rev. Lett. 98, 035703 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    J.A. Warren, T. Pusztai, L. Környei, L. Gránásy, Phys. Rev. B 79, 014204 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    H. Emmerich, R. Siquieri, J. Phys.: Condens. Matter 18, 11121 (2006)ADSGoogle Scholar
  34. 34.
    R. Siquieri, H. Emmerich, J. Phys.: Condens. Matter 21, 464105 (2009)ADSGoogle Scholar
  35. 35.
    J. Kundin, H.-L. Chen, H. Emmerich, R. Schmid-Fetzer, EPJ Plus 126, 96 (2011)ADSGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  1. 1.Materials and Process Simulation, University of BayreuthBayreuthGermany

Personalised recommendations