The European Physical Journal Special Topics

, Volume 223, Issue 3, pp 469–479 | Cite as

Surface tension of liquid Al-Cu and wetting at the Cu/Sapphire solid-liquid interface

  • J. Schmitz
  • J. BrilloEmail author
  • I. Egry
Regular Article
Part of the following topical collections:
  1. Heterogenous Nucleation and Microstructure Formation: Steps Towards a System and Scale Bridging Understanding


For the study of the interaction of a liquid alloy with differently oriented single crystalline sapphire surfaces precise surface tension data of the liquid are fundamental. We measured the surface tension of liquid Al-Cu contactlessly on electromagnetically levitated samples using the oscillating drop technique. Data were obtained for samples covering the entire range of composition and in a broad temperature range. The surface tensions can be described as linear functions of temperature with negative slopes. Moreover, they decrease monotonically with an increase of aluminium concentration. The observed behaviour with respect to both temperature and concentration is in agreement with a thermodynamic model calculation using the regular solution approximation. Surface tensions were used to calculate interfacial energies from the contact angles of liquid Cu droplets, deposited on the C(0001), A(11-20), R(1-102) surfaces of an α-Al2O3 substrate. The contact angles were measured by means of the sessile drop method at 1380 K. In the Cu/α-Al2O3 system, no anisotropy is evident neither for the contact angles nor for the interfacial energies of different surfaces. The work of adhesion of this system is isotropic, too.


Surface Tension Contact Angle European Physical Journal Special Topic Excess Gibbs Energy Liquid Copper 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Schleip, D.M. Herlach, B. Feuerbacher, Europhys. Lett. 11, 751 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    D.M. Herlach, B. Feuerbacher, E. Schleip, Mat. Sci. Eng. A 133, 795 (1990)CrossRefGoogle Scholar
  3. 3.
    K. Landry, S. Kalogeropoulou, N. Eustathopoulos, Mat. Sci. Eng. A 254, 99 (1998)CrossRefGoogle Scholar
  4. 4.
    B. Drevet, K. Landry, P. Vikner, N. Eustathopoulos, Scr. Mater. 35, 1265 (N1996)CrossRefGoogle Scholar
  5. 5.
    S.K. Rhee, J. Am. Ceram. Soc. 55, 300 (1972)CrossRefGoogle Scholar
  6. 6.
    P. Shen, H. Fujii, T. Matsumoto, K. Nogi, Scripta Mater. 48, 779 (2003)CrossRefGoogle Scholar
  7. 7.
    P. Shen, H. Fujii, T. Matsumoto, K. Nogi, Acta Mater. 51, 4897 (2003)CrossRefGoogle Scholar
  8. 8.
    P. Shen, H. Fujii, T. Matsumoto, K. Nogi, J. Mat. Sci. 40, 2329 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    A. Glinter, G. Mendoza-Suarez, R.A.L. Drew, Mat. Sci. Eng. A 495, 147 (2008)CrossRefGoogle Scholar
  10. 10.
    J. Schmitz, Untersuchung der Anisotropie im Benetzungsverhalten flüssiger Al-Cu Legierungen auf einkristallinen Al2O3 Substraten, Ph.D. thesis, RWTH – Aachen, 2011Google Scholar
  11. 11.
    N. Eusthatopoulos, M.G. Nicolas, B. Drevet, Wettability at High Temperatures, ed R.W. Cahn, Materials Series, Vol. 3 (Pergamon, Elsevier Science Ltd., Amsterdam, 1999)Google Scholar
  12. 12.
    D.M. Herlach, R.F. Cochrane, I. Egry, H.J. Fecht, A.L. Greer, Int. Mat. Rev. 38, 273 (1993)CrossRefGoogle Scholar
  13. 13.
    M. Shimoji, Liquid Metals an Introduction to the Physics and Chemistry of Metals in the Liquid State (London: Academic Press, 1977)Google Scholar
  14. 14.
    D.M. Herlach, I. Egry, P. Baeri, F. Spaepen (eds.), Undercooled Metallic Melts: Properties, Solidification and Metastable Phases, reprinted from Mat. Sci. Eng. (Elsevier, Amsterdam, 1994)Google Scholar
  15. 15.
    J. Brillo, G. Lohfer, F. Schmidt-Hohagen, S. Schneider, I. Egry, J. Mat. Prod. Tech. 16, 247 (2006)Google Scholar
  16. 16.
    S. Krishnan, G.P. Hansen, R.H. Hauge, J.L. Margrave, High Temp. Sci. 29, 17 (1990)Google Scholar
  17. 17.
    J. Brillo, I. Egry, I. Ho, Int. J. Thermophys. 27, 494 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    L. Rayleigh, Proc. Roy. Soc. 29, 71 (1879)CrossRefGoogle Scholar
  19. 19.
    D.L. Cummings, D.A. Blackburn, J. Fluid Mech. 224, 395 (1991)ADSCrossRefzbMATHGoogle Scholar
  20. 20.
    J. Schmitz, J. Brillo, I. Egry, J Mater Sci. 45, 2144 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    I. Egry, J. Brillo, D. Holland-Moritz, Y. Plevachuk, Mat. Sci. Eng A. 495, 14 (2008)CrossRefGoogle Scholar
  22. 22.
    J.A.V. Butler, Proc. Roy. Soc. A 135, 348 (1932)ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    T. Tanaka, T. Iida, Steel Res. 65, 21 (1994)Google Scholar
  24. 24.
    T. Tanaka, K. Hack, T. Iida, S. Hara, Z. Metallkd. 87, 380 (1996)Google Scholar
  25. 25.
    C. Lüdecke, D. Lüdecke, Thermodynamik (Springer, Heidelberg, 2000), p. 506Google Scholar
  26. 26.
    V.T. Witusiewicz, U. Hecht, S.G. Fries, S. Rex, J. Alloys Comp. 385, 133 (2004)Google Scholar
  27. 27.
    N. Saunders, Al-Cu System COST 507 – Thermochemical Database for Light Metal Alloys, Vol. 2, edited by I. Ansara et al. (European Communities, Luxembourg, 1998), p. 28Google Scholar
  28. 28.
    P. Laty, J.C. Joud, P. Desre, Surf. Sci. 69, 508 (1977)ADSCrossRefGoogle Scholar
  29. 29.
    W.N. Eremenko, W.I. Nichenko, J.W. Naidich, Izw. Akad. Nauk 3, 150 (1961)Google Scholar
  30. 30.
    P. Laty, J.C. Joud, P. Desre, Surf. Sci. 104, 105 (1981)ADSCrossRefGoogle Scholar
  31. 31.
    K. Kitayama, A. Glaeser, J. Am. Ceram. Soc. 85, 611 (2002)CrossRefGoogle Scholar
  32. 32.
    H. Suzuki, H. Matsubara, J. Kishino, T. Kondoh, J. Ceram. Soc. Jpn. 106, 1215 (1998)CrossRefGoogle Scholar
  33. 33.
    D. Chatain, Annu. Rev. Mater. Res. 38, 45 (2008)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  1. 1.Institut für Materialphysik im Weltraum, Deutsches Zentrum für Luft- und Raumfahrt (DLR)KölnGermany

Personalised recommendations