Advertisement

The European Physical Journal Special Topics

, Volume 223, Issue 3, pp 455–467 | Cite as

Characterization of local structures with bond-order parameters and graphs of the nearest neighbors, a comparison

  • U. Gasser
  • F. Ziese
  • G. Maret
Review
Part of the following topical collections:
  1. Heterogenous Nucleation and Microstructure Formation: Steps Towards a System and Scale Bridging Understanding

Abstract

We compare two methods for the characterization of local order in samples undergoing crystal nucleation and growth. Particles with a crystal-like surrounding need to be identified to follow the nucleation process. Both methods are based on the knowledge of the particle positions in a small volume of the sample. (i) Local bond-order parameters are used to quantify the orientation of the nearest neighbors of a particle, while (ii) the graph method determines the topological arrangement of the nearest neighbors and the bonds between them. Both methods are used to detect crystal-like particles and crystal nuclei in a supercooled fluid surrounding and to determine the structure of small crystal nuclei. The properties of these nuclei are of great interest for a deeper understanding of crystal nucleation, and they can be studied in detail in colloidal model systems that allow to follow the evolution of the nuclei with single particle resolution.

Keywords

European Physical Journal Special Topic Graph Method Central Particle Crystal Nucleation Crystal Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K.F. Kelton, Crystal nucleation in liquids and glasses, edited by H. Ehrenbach, D. Turnbull, Solid State Physics, vol. 45 (Academic Press, Boston, 1991), p. 75Google Scholar
  2. 2.
    U. Gasser, J. Phys.: Cond. Mat. 21, 203101 (2009)ADSGoogle Scholar
  3. 3.
    U. Gasser, E.R. Weeks, A. Schofield, P.N. Pusey, D.A. Weitz, Science 292, 258 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    P. Rein ten Wolde, M.J. Ruiz-Montero, D. Frenkel, Phys. Rev. Lett. 75, 2714 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    P.N. Pusey, W. van Megen, Nature 320, 340 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    P.N. Pusey, W. van Megen, P. Bartlett, B.J. Ackerson, J.G. Rarity, S.M. Underwood, Phys. Rev. Lett. 63, 2753 (1989)ADSCrossRefGoogle Scholar
  7. 7.
    K. Schaetzel, B.J. Ackerson, Phys. Rev. E 48, 3766 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    B.J. Ackerson, K. Schaetzel, Phys. Rev. E 52, 6448 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    V. Prasad, D. Semwogerere, E.R. Weeks, J. Phys.: Cond. Mat. 19, 113102 (2007)ADSGoogle Scholar
  10. 10.
    J.C. Crocker, D.G. Grier, J. Coll. Interface Sci. 179, 298 (1996)CrossRefGoogle Scholar
  11. 11.
    K. Sandomirski, E. Allahyarov, H. Lowen, S.U. Egelhaaf, Soft Matter 7, 8050 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    F. Ziese, G. Maret, U. Gasser, J. Phys.: Condens. Matter 25, 375105 (2013)Google Scholar
  13. 13.
    P.J. Steinhardt, D.R. Nelson, M. Ronchetti, Phys. Rev. B 28, 784 (1983)ADSCrossRefGoogle Scholar
  14. 14.
    J.S. van Duijneveldt, D. Frenkel, J. Chem. Phys. 96, 4655 (1992)ADSCrossRefGoogle Scholar
  15. 15.
    S. Auer, D. Frenkel, J. Chem. Phys. 120, 3015 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    C. Desgranges, J. Delhommelle, Phys. Rev. B 77, 6 (2008)CrossRefGoogle Scholar
  17. 17.
    U. Gasser, A. Schofield, D.A. Weitz, J. Phys.: Condens. Matter 15, S375 (2003)ADSGoogle Scholar
  18. 18.
    M. Leocmach, H. Tanaka, Nature Comm. 3, 8 (2012)CrossRefGoogle Scholar
  19. 19.
    W. Lechner, C. Dellago, J. Chem. Phys. 129, 5 (2008)CrossRefGoogle Scholar
  20. 20.
    D.S. Franzblau, Phys. Rev. B 44, 4925 (1991)ADSCrossRefGoogle Scholar
  21. 21.
    S.W. Provencher, Comput. Phys. Comm. 27, 213 (1982)ADSCrossRefGoogle Scholar
  22. 22.
    A.-P. Hynninen, M. Dijkstra, Phys. Rev. E 68, 021407 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    J.-P. Hansen, I.R. McDonald, Theory of simple liquids, 2nd edn. (Academic Press, London, 1986)Google Scholar
  24. 24.
    G. Voronoi, J. Reine Ang. Math. 133, 97 (1908)zbMATHGoogle Scholar
  25. 25.
    J.L. Finney, J. Comput. Phys. 32, 137 (1979)ADSCrossRefGoogle Scholar
  26. 26.
    J.P. Troadec, A. Gervois, L. Oger, Europhys. Lett. 42, 167 (1998)ADSCrossRefGoogle Scholar
  27. 27.
    B. O'Malley, Molecular Dynamics Investigation of Crystallization in the Hard Sphere System, Ph.D. thesis (Royal Melbourne Institute of Technology, 2001)Google Scholar
  28. 28.
    W. Mickel, S.C. Kapfer, G.E. Schroder-Turk, K. Mecke, J. Chem. Phys. 138, 7 (2013)CrossRefGoogle Scholar
  29. 29.
    P.N. Pusey, E. Zaccarelli, C. Valeriani, E. Sanz, W.C.K. Poon, M.E. Cates, Phil. Trans. Royal Soc. a-Math. Phys. Eng. Sci. 367, 4993 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    S. Auer, D. Frenkel, Ann. Rev. Phys. Chem. 55, 333 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    S. Auer, D. Frenkel, Adv. Polym. Sci. 173, 149 (2005)CrossRefGoogle Scholar
  32. 32.
    P. Rein ten Wolde, M.J. Ruiz-Montero, D. Frenkel, J. Chem. Phys. 104, 9932 (1996)ADSCrossRefGoogle Scholar
  33. 33.
    S. Auer, D. Frenkel, Nature 413, 711 (2001)ADSCrossRefGoogle Scholar
  34. 34.
    B. O'Malley, I. Snook, J. Chem. Phys. 123, 054511 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    Y.H. Chui, R.J. Rees, I.K. Snook, B. O'Malley, S.P. Russo, J. Chem. Phys. 125, 114703 (2006)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences and Springer 2014

Authors and Affiliations

  1. 1.Laboratory for Neutron Scattering, Paul Scherrer InstitutVilligenSwitzerland
  2. 2.Physics Department, University of KonstanzKonstanzGermany

Personalised recommendations